Pregled bibliografske jedinice broj: 1068157
Ensemble learning with time-series clustering for aggregated short-term load forecasting
Ensemble learning with time-series clustering for aggregated short-term load forecasting // Proceedings of the 20th IEEE Mediterranean Electrotechnical Conference (IEEE MELECON 2020) / Romano, Pietro ; Costanzo, Luigi (ur.).
Palermo: Institute of Electrical and Electronics Engineers (IEEE), 2020. str. 553-558 doi:10.1109/MELECON48756.2020.9140676 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1068157 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Ensemble learning with time-series clustering for aggregated short-term load forecasting
Autori
Sarajcev, Petar ; Jakus, Damir ; Vasilj, Josip
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 20th IEEE Mediterranean Electrotechnical Conference (IEEE MELECON 2020)
/ Romano, Pietro ; Costanzo, Luigi - Palermo : Institute of Electrical and Electronics Engineers (IEEE), 2020, 553-558
ISBN
978-1-7281-5199-1
Skup
20th IEEE Mediterranean Electrotechnical Conference (IEEE MELECON 2020)
Mjesto i datum
Palermo, Italija, 15.06.2020. - 18.06.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
smart grids ; load forecasting ; machine learning ; time-series analysis ; clustering ; ensemble ; Bayesian optimization
Sažetak
Load forecasting, as one of the important research areas of the smart grids, spans a wide range of methods, from traditional time-series econometric analyses to different machine learning and, recently, even deep learning approaches. This paper proposes a novel machine learning approach for short-term load time-series forecasting, which utilizes aggregate load clustering with ensemble learning based on the windowing method. Ensemble of base learners, comprised of gradient boosting, support vector machine (SVM) and random forest, is created by stacking models with an “elastic net” linear regression. Models hyper-parameters are fine-tuned using a grid search with cross-validation approach, except for the SVM, where Bayesian optimization is introduced. Features engineering and selection based on the importance analysis is employed, using weather and load time-series data. The mean absolute percentage error is used for verification. Obtained results show that the proposed approach exhibits accurate and robust predictions.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus