Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1067520

Perceptual Autoencoder for Compressive Sensing Image Reconstruction


Ralašić, Ivan; Seršić, Damir; Šegvić, Siniša
Perceptual Autoencoder for Compressive Sensing Image Reconstruction // Informatica, 1 (2020), 1; 1-18 doi:10.15388/20-infor421 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1067520 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Perceptual Autoencoder for Compressive Sensing Image Reconstruction

Autori
Ralašić, Ivan ; Seršić, Damir ; Šegvić, Siniša

Izvornik
Informatica (0868-4952) 1 (2020), 1; 1-18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
compressive sensing ; convolutional autoencoder ; deep learning ; image reconstruction ; perceptual loss ; principal component analysis

Sažetak
This paper presents a non-iterative deep learning approach to compressive sensing (CS) image reconstruction using a convolutional autoencoder and a residual learning network. An efficient measurement design is proposed in order to enable training of the compressive sensing models on normalized and mean-centred measurements, along with a practical network initialization method based on principal component analysis (PCA). Finally, perceptual residual learning is proposed in order to obtain semantically informative image reconstructions along with high pixel-wise reconstruction accuracy at low measurement rates.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Ralašić (autor)

Avatar Url Siniša Šegvić (autor)

Avatar Url Damir Seršić (autor)

Poveznice na cjeloviti tekst rada:

doi informatica.vu.lt

Citiraj ovu publikaciju:

Ralašić, Ivan; Seršić, Damir; Šegvić, Siniša
Perceptual Autoencoder for Compressive Sensing Image Reconstruction // Informatica, 1 (2020), 1; 1-18 doi:10.15388/20-infor421 (međunarodna recenzija, članak, znanstveni)
Ralašić, I., Seršić, D. & Šegvić, S. (2020) Perceptual Autoencoder for Compressive Sensing Image Reconstruction. Informatica, 1 (1), 1-18 doi:10.15388/20-infor421.
@article{article, author = {Rala\v{s}i\'{c}, Ivan and Ser\v{s}i\'{c}, Damir and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2020}, pages = {1-18}, DOI = {10.15388/20-infor421}, keywords = {compressive sensing, convolutional autoencoder, deep learning, image reconstruction, perceptual loss, principal component analysis}, journal = {Informatica}, doi = {10.15388/20-infor421}, volume = {1}, number = {1}, issn = {0868-4952}, title = {Perceptual Autoencoder for Compressive Sensing Image Reconstruction}, keyword = {compressive sensing, convolutional autoencoder, deep learning, image reconstruction, perceptual loss, principal component analysis} }
@article{article, author = {Rala\v{s}i\'{c}, Ivan and Ser\v{s}i\'{c}, Damir and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2020}, pages = {1-18}, DOI = {10.15388/20-infor421}, keywords = {compressive sensing, convolutional autoencoder, deep learning, image reconstruction, perceptual loss, principal component analysis}, journal = {Informatica}, doi = {10.15388/20-infor421}, volume = {1}, number = {1}, issn = {0868-4952}, title = {Perceptual Autoencoder for Compressive Sensing Image Reconstruction}, keyword = {compressive sensing, convolutional autoencoder, deep learning, image reconstruction, perceptual loss, principal component analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font