Pregled bibliografske jedinice broj: 1066102
Application of Deep Reinforcement Learning in Traffic Signal Control: An Overview and Impact of Open Traffic Data
Application of Deep Reinforcement Learning in Traffic Signal Control: An Overview and Impact of Open Traffic Data // Applied Sciences-Basel, 10 (2020), 11; 4011, 25 doi:10.3390/app10114011 (međunarodna recenzija, pregledni rad, znanstveni)
CROSBI ID: 1066102 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of Deep Reinforcement Learning in
Traffic Signal Control: An Overview and Impact
of Open Traffic Data
Autori
Gregurić, Martin ; Vujić, Miroslav ; Alexopoulos, Charalampos ; Miletić, Mladen
Izvornik
Applied Sciences-Basel (2076-3417) 10
(2020), 11;
4011, 25
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, pregledni rad, znanstveni
Ključne riječi
deep reinforcement learning ; adaptive traffic signal control ; multi-agent systems ; intelligent mobility ; deep neural networks ; open traffic data ; big data
Sažetak
Persistent congestions which are varying in strength and duration in the dense traffic networks are the most prominent obstacle towards sustainable mobility. Those types of congestions cannot be adequately resolved by the traditional Adaptive Traffic Signal Control (ATSC). The introduction of Reinforcement Learning (RL) in ATSC as tackled those types of congestions by using on-line learning, which is based on the trial and error approach. Furthermore, RL is prone to the dimensionality curse related to the state–action space size based on which a non-linear quality function is derived. The Deep Reinforcement Learning (DRL) framework uses Deep Neural Networks (DNN) to digest raw traffic data to approximate the quality function of RL. This paper provides a comprehensive analysis of the most recent DRL approaches used for the ATSC algorithm design. Special emphasis is set to overview of the traffic state representation and multi-agent DRL frameworks applied for the large traffic networks. Best practices are provided for choosing the adequate DRL model, hyper- parameters tuning, and model architecture design. Finally, this paper provides a discussion about the importance of the open traffic data concept for the extensive application of DRL in the real world ATSC.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
EK-H2020-857592 - Twinning koordinacijska akcija u području otvorenih podataka (TODO) (Musa, Anamarija; Tutić, Dražen; Vujić, Miroslav; Čavrak, Igor; Žajdela Hrustek, Nikolina; Kuveždić Divjak, Ana; Šalamon, Dragica, EK ) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus