Pregled bibliografske jedinice broj: 1065456
Robust A*-Search Image Segmentation Algorithm for Mine-like Objects Segmentation in SONAR Images
Robust A*-Search Image Segmentation Algorithm for Mine-like Objects Segmentation in SONAR Images // International journal of electrical and computer engineering systems, 11 (2020), 2; 53-66 doi:10.32985/ijeces.11.2.1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1065456 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Robust A*-Search Image Segmentation Algorithm for Mine-like Objects Segmentation in SONAR Images
Autori
Aleksi, Ivan ; Matić, Tomislav ; Lehmann, Benjamin ; Kraus, Dieter
Izvornik
International journal of electrical and computer engineering systems (1847-6996) 11
(2020), 2;
53-66
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
A*-search ; image segmentation ; path planning ; synthetic aperture sonar
Sažetak
This paper addresses a sonar image segmentation method employing a Robust A*-Search Image Segmentation (RASIS) algorithm. RASIS is applied on Mine-Like Objects (MLO) in sonar images, where an object is defined by highlight and shadow regions, i.e. regions of high and low pixel intensities in a side-scan sonar image. RASIS uses a modified A*-Search method, which is usually used in mobile robotics for finding the shortest path where the environment map is predefined, and the start/goal locations are known. RASIS algorithm represents the image segmentation problem as a path-finding problem. Main modification concerning the original A*-Search is in the cost function that takes pixel intensities and contour curvature in order to navigate the 2D segmentation contour. The proposed method is implemented in Matlab and tested on real MLO images. MLO image dataset consist of 70 MLO images with manta mine present, and 70 MLO images with cylinder mine present. Segmentation success rate is obtained by comparing the ground truth data given by the human technician who is detecting MLOs. Measured overall success rate (highlight and shadow regions) is 91% for manta mines and 81% for cylinder mines.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus