Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1064290

Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron


Car, Zlatan; Baressi Šegota, Sandi; Anđelić, Nikola; Lorencin, Ivan; Mrzljak, Vedran
Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron // Computational and mathematical methods in medicine, 2020 (2020), 5714714, 10 doi:10.1155/2020/5714714 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1064290 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron

Autori
Car, Zlatan ; Baressi Šegota, Sandi ; Anđelić, Nikola ; Lorencin, Ivan ; Mrzljak, Vedran

Izvornik
Computational and mathematical methods in medicine (1748-670X) 2020 (2020); 5714714, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial intelligence ; COVID-19 ; infection spread modeling ; machine learning ; multilayer perceptron

Sažetak
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross- validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti



POVEZANOST RADA


Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.hindawi.com

Citiraj ovu publikaciju:

Car, Zlatan; Baressi Šegota, Sandi; Anđelić, Nikola; Lorencin, Ivan; Mrzljak, Vedran
Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron // Computational and mathematical methods in medicine, 2020 (2020), 5714714, 10 doi:10.1155/2020/5714714 (međunarodna recenzija, članak, znanstveni)
Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I. & Mrzljak, V. (2020) Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron. Computational and mathematical methods in medicine, 2020, 5714714, 10 doi:10.1155/2020/5714714.
@article{article, author = {Car, Zlatan and Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Lorencin, Ivan and Mrzljak, Vedran}, year = {2020}, pages = {10}, DOI = {10.1155/2020/5714714}, chapter = {5714714}, keywords = {artificial intelligence, COVID-19, infection spread modeling, machine learning, multilayer perceptron}, journal = {Computational and mathematical methods in medicine}, doi = {10.1155/2020/5714714}, volume = {2020}, issn = {1748-670X}, title = {Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron}, keyword = {artificial intelligence, COVID-19, infection spread modeling, machine learning, multilayer perceptron}, chapternumber = {5714714} }
@article{article, author = {Car, Zlatan and Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Lorencin, Ivan and Mrzljak, Vedran}, year = {2020}, pages = {10}, DOI = {10.1155/2020/5714714}, chapter = {5714714}, keywords = {artificial intelligence, COVID-19, infection spread modeling, machine learning, multilayer perceptron}, journal = {Computational and mathematical methods in medicine}, doi = {10.1155/2020/5714714}, volume = {2020}, issn = {1748-670X}, title = {Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron}, keyword = {artificial intelligence, COVID-19, infection spread modeling, machine learning, multilayer perceptron}, chapternumber = {5714714} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font