Pregled bibliografske jedinice broj: 1063976
Shadowing for infinite dimensional dynamics and exponential trichotomies
Shadowing for infinite dimensional dynamics and exponential trichotomies // Proceedings. Section A. Mathematics (Edinburgh), 151 (2021), 863-884 doi:10.1017/prm.2020.42 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1063976 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Shadowing for infinite dimensional dynamics and
exponential trichotomies
Autori
Backes Lucas ; Dragičević, Davor
Izvornik
Proceedings. Section A. Mathematics (Edinburgh) (0308-2105) 151
(2021);
863-884
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability
Sažetak
Let $(A_m)_{; ; ; ; ; ; m\in \Z}; ; ; ; ; ; $ be a sequence of bounded linear maps acting on an arbitrary Banach space $X$ and admitting an exponential trichotomy and let $f_m:X\to X$ be a Lispchitz map for every $m\in \Z$. We prove that whenever the Lipschitz constants of $f_m$, $m\in \Z$, are uniformly small, the nonautonomous dynamics given by $x_{; ; ; ; ; ; m+1}; ; ; ; ; ; =A_mx_m+f_m(x_m)$, $m\in \Z$, has various types of shadowing. Moreover, if $X$ is finite dimensional and each $A_m$ is invertible we prove that a converse result is also true. Furthermore, we get similar results for one- sided and continuous time dynamics. As applications of our results we study the Hyers- Ulam stability for certain difference equations and we obtain a very general version of the Grobman-Hartman's theorem for nonautonomous dynamics.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Davor Dragičević
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus