Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1063976

Shadowing for infinite dimensional dynamics and exponential trichotomies


Backes Lucas; Dragičević, Davor
Shadowing for infinite dimensional dynamics and exponential trichotomies // Proceedings. Section A. Mathematics (Edinburgh), 151 (2021), 863-884 doi:10.1017/prm.2020.42 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1063976 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Shadowing for infinite dimensional dynamics and exponential trichotomies

Autori
Backes Lucas ; Dragičević, Davor

Izvornik
Proceedings. Section A. Mathematics (Edinburgh) (0308-2105) 151 (2021); 863-884

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability

Sažetak
Let $(A_m)_{; ; ; ; ; ; m\in \Z}; ; ; ; ; ; $ be a sequence of bounded linear maps acting on an arbitrary Banach space $X$ and admitting an exponential trichotomy and let $f_m:X\to X$ be a Lispchitz map for every $m\in \Z$. We prove that whenever the Lipschitz constants of $f_m$, $m\in \Z$, are uniformly small, the nonautonomous dynamics given by $x_{; ; ; ; ; ; m+1}; ; ; ; ; ; =A_mx_m+f_m(x_m)$, $m\in \Z$, has various types of shadowing. Moreover, if $X$ is finite dimensional and each $A_m$ is invertible we prove that a converse result is also true. Furthermore, we get similar results for one- sided and continuous time dynamics. As applications of our results we study the Hyers- Ulam stability for certain difference equations and we obtain a very general version of the Grobman-Hartman's theorem for nonautonomous dynamics.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-1239 - Operatori pomaka, statistički zakoni i beskonačno-dimenzionalni dinamički sustavi (TOSLDS) (Dragičević, Davor, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Davor Dragičević (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org

Citiraj ovu publikaciju:

Backes Lucas; Dragičević, Davor
Shadowing for infinite dimensional dynamics and exponential trichotomies // Proceedings. Section A. Mathematics (Edinburgh), 151 (2021), 863-884 doi:10.1017/prm.2020.42 (međunarodna recenzija, članak, znanstveni)
Backes Lucas & Dragičević, D. (2021) Shadowing for infinite dimensional dynamics and exponential trichotomies. Proceedings. Section A. Mathematics (Edinburgh), 151, 863-884 doi:10.1017/prm.2020.42.
@article{article, author = {Dragi\v{c}evi\'{c}, Davor}, year = {2021}, pages = {863-884}, DOI = {10.1017/prm.2020.42}, keywords = {Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability}, journal = {Proceedings. Section A. Mathematics (Edinburgh)}, doi = {10.1017/prm.2020.42}, volume = {151}, issn = {0308-2105}, title = {Shadowing for infinite dimensional dynamics and exponential trichotomies}, keyword = {Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability} }
@article{article, author = {Dragi\v{c}evi\'{c}, Davor}, year = {2021}, pages = {863-884}, DOI = {10.1017/prm.2020.42}, keywords = {Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability}, journal = {Proceedings. Section A. Mathematics (Edinburgh)}, doi = {10.1017/prm.2020.42}, volume = {151}, issn = {0308-2105}, title = {Shadowing for infinite dimensional dynamics and exponential trichotomies}, keyword = {Shadowing, Nonautonomus systems, Exponential trichotomies, Nonlinear perturbations, Hyers-Ulam stability} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font