Pregled bibliografske jedinice broj: 1063948
Data Visualization Classification Using Simple Convolutional Neural Network Model
Data Visualization Classification Using Simple Convolutional Neural Network Model // The International Journal of Electrical and Computer Engineering Systems, Vol 11, No 1 (2020), 43-51 doi:10.32985/ijeces (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1063948 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data Visualization Classification Using Simple
Convolutional Neural Network Model
Autori
Bajić, Filip ; Job, Josip ; Nenadić, Krešimir
Izvornik
The International Journal of Electrical and Computer Engineering Systems (1847-6996) Vol 11, No 1
(2020);
43-51
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
data visualization ; chart image classification ; convolutional neural networks ; computational modeling ; chart recognition
Sažetak
Data visualization is developed from the need to display a vast quantity of information more transparently. Data visualization often incorporates important information that is not listed anywhere in the document and enables the reader to discover significant data and save it in longer-term memory. On the other hand, Internet search engines have difficulty processing data visualization and connecting visualization and the request submitted by the user. With the use of data visualization, all blind individuals and individuals with impaired vision are left out. This article utilizes machine learning to classify data visualizations into 10 classes. Tested model is trained four times on the dataset which is preprocessed through four stages. Achieved accuracy of 89 % is comparable to other methods’ results. It is showed that image processing can impact results, i.e. increasing or decreasing level of details in image impacts on average classification accuracy significantly.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus