Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1061536

The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties


Saker, Samir; Krnić, Mario
The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties // Proceedings of the American Mathematical Society, 149 (2021), 1; 231-243 doi:10.1090/proc/15180 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1061536 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties

Autori
Saker, Samir ; Krnić, Mario

Izvornik
Proceedings of the American Mathematical Society (0002-9939) 149 (2021), 1; 231-243

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
discrete Gehring class, discrete Muckenhoupt class, self-improving property, harmonic analysis

Sažetak
The main objective of this paper is a study of the structure and basic properties of the weighted discrete Gehring classes, as well as the study of relationship between discrete Muckenhoupt and Gehring classes. First, we prove that the weighted discrete Muckenhoupt class \mathcal{; ; A}; ; _{; ; \lambda }; ; ^{; ; 1}; ; (C)$, $C>1$, consisting of nonincreasing sequences, belongs to the weighted discrete Gehring class $\mathcal{; ; G}; ; % _{; ; \lambda }; ; ^{; ; p}; ; (A)$, by giving explicit values of exponent $p$ and constant $A$. Next, we prove the self-improving property of the weighted Gehring class $\mathcal{; ; G}; ; _{; ; \lambda }; ; ^{; ; p}; ; ({; ; K)}; ; $, $p>1$, $K>1$, consisting of nonincreasing sequences. The exponent and constant of transition are explicitly given. Finally, utilizing the self-improving property of the weighted Gehring class, we also derive the self-improving property of a discrete Muckenhoupt class $\mathcal{; ; A}; ; ^{; ; p}; ; (C)$, $p>1$, $C>1$, with exact values of exponent and constant of transition.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mario Krnić (autor)

Poveznice na cjeloviti tekst rada:

doi www.ams.org www.ams.org

Citiraj ovu publikaciju:

Saker, Samir; Krnić, Mario
The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties // Proceedings of the American Mathematical Society, 149 (2021), 1; 231-243 doi:10.1090/proc/15180 (međunarodna recenzija, članak, znanstveni)
Saker, S. & Krnić, M. (2021) The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties. Proceedings of the American Mathematical Society, 149 (1), 231-243 doi:10.1090/proc/15180.
@article{article, author = {Saker, Samir and Krni\'{c}, Mario}, year = {2021}, pages = {231-243}, DOI = {10.1090/proc/15180}, keywords = {discrete Gehring class, discrete Muckenhoupt class, self-improving property, harmonic analysis}, journal = {Proceedings of the American Mathematical Society}, doi = {10.1090/proc/15180}, volume = {149}, number = {1}, issn = {0002-9939}, title = {The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties}, keyword = {discrete Gehring class, discrete Muckenhoupt class, self-improving property, harmonic analysis} }
@article{article, author = {Saker, Samir and Krni\'{c}, Mario}, year = {2021}, pages = {231-243}, DOI = {10.1090/proc/15180}, keywords = {discrete Gehring class, discrete Muckenhoupt class, self-improving property, harmonic analysis}, journal = {Proceedings of the American Mathematical Society}, doi = {10.1090/proc/15180}, volume = {149}, number = {1}, issn = {0002-9939}, title = {The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties}, keyword = {discrete Gehring class, discrete Muckenhoupt class, self-improving property, harmonic analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font