Pregled bibliografske jedinice broj: 1061400
Evaluating Different Machine Learning Methods on RapidEye and PlanetScope Satellite Imagery
Evaluating Different Machine Learning Methods on RapidEye and PlanetScope Satellite Imagery // Geodetski list, 74 (97) (2020), 1; 1-18 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1061400 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Evaluating Different Machine Learning Methods on RapidEye and PlanetScope Satellite Imagery
Autori
Kranjčić, Nikola ; Medak, Damir
Izvornik
Geodetski list (0016-710X) 74 (97)
(2020), 1;
1-18
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
support vector machines ; artificial neural network ; naive Bayes ; random forest ; RapidEye ; PlanetScope
Sažetak
Since the first satellite imagery of RapidEye and PlanetScope became available, numerous studies have been conducted. However, only a few authors have focused on evaluating the accuracy of more than two machine learning methods in land cover classification. This paper evaluates the accuracy of four different machine learning methods, namely: support vector machine, artificial neural network, naive Bayes, and random forest. All analysis was conducted on cities in Croatia, Varaždin and Osijek. On Varaždin area on RapidEye satellite imagery support vector machine achieved overall kappa value 0.80, artificial neural network 0.37, naive Bayes 0.84 and random forest 0.76. On Varaždin area on PlanetScope satellite imagery support vector machine achieved overall kappa value 0.77, artificial neural network 0.38, naive Bayes 0.76 and random forest 0.75. On Osijek area on RapidEye satellite imagery support vector machine achieved overall kappa value 0.75, artificial neural network 0.36, naive Bayes 0.85 and random forest 0.76. On Osijek area on Planet- Scope satellite imagery support vector machine achieved overall kappa value 0.64, artificial neural network 0.23, naive Bayes 0.72 and random forest 0.63. Performance time of each method is also evaluated. Naive Bayes and random forest have best performance time in every scenario.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5621 - Geoprostorno praćenje zelene infrastrukture na temelju terestričkih, zračnih i satelitskih snimaka (GEMINI) (Medak, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Geodetski fakultet, Zagreb,
Geotehnički fakultet, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus