Pregled bibliografske jedinice broj: 1059504
Player Tracking in Sports Videos
Player Tracking in Sports Videos // 2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)
Sydney: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 334-340 doi:10.1109/CloudCom.2019.00058 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1059504 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Player Tracking in Sports Videos
Autori
Burić, Matija ; Ivašić-Kos, Marina ; Pobar, Miran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)
/ - Sydney : Institute of Electrical and Electronics Engineers (IEEE), 2019, 334-340
ISBN
978-1-7281-5011-6
Skup
IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2019)
Mjesto i datum
Sydney, Australija, 11.12.2019. - 13.12.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Object Detection ; Yolo ; Deep SORT Tracking ; Action Recognition ; Sports ; Hungarian ; computer vision ; object tracking
Sažetak
This paper considers the problem of tracking the players in handball videos using a single video source. Tracking of handball players in the video is a difficult task as they can frequently leave and re-enter the camera field of view, often change directions quickly and occlude each other. Players wear similar team uniforms, play indoor under artificial illumination, with the background than can vary significantly as the handball court is often painted in various colors. The continually improving accuracy of CNN-based object detectors makes tracking-by-detection methods an attractive choice for tracking players in sports videos as they can perform online and with low computational requirements on top of object detection. Here we consider the use of three tracking-by-detection methods in conjunction with the YOLO object detector, namely the standard Hungarian assignment algorithm, the Simple Online, and Real-time Tracking (SORT) algorithm that adds a motion model, and its extension Deep SORT. The methods are tested on a custom dataset of handball video scenes.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus