Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1059362

A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures


Vranković, Ana; Lerga, Jonatan; Saulig, Nicoletta
A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures // EURASIP Journal on Advances in Signal Processing, 18 (2020), 1-19 doi:10.1186/s13634-020-00679-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1059362 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures

Autori
Vranković, Ana ; Lerga, Jonatan ; Saulig, Nicoletta

Izvornik
EURASIP Journal on Advances in Signal Processing (1687-6180) 18 (2020); 1-19

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Rényi entropy ; time-frequency distributions ; relative intersection of confidence intervals ; adaptive thresholding

Sažetak
The paper proposes a novel approach for extraction of useful information and blind source separation of signal components from noisy data in the time- frequency domain. The method is based on the local Rényi entropy calculated inside adaptive, data- driven 2D regions, the sizes of which are calculated utilizing the improved, relative intersection of confidence intervals (RICI) algorithm. One of the advantages of the proposed technique is that it does not require any prior knowledge on the signal, its components, or noise, but rather the processing is performed on the noisy signal mixtures. Also, it is shown that the method is robust to the selection of time- frequency distributions (TFDs). It has been tested for different signal-to-noise- ratios (SNRs), both for synthetic and real-life data. When compared to fixed TFD thresholding, adaptive TFD thresholding based on RICI rule and the 1D entropy-based approach, the proposed adaptive method significantly increases classification accuracy (by up to 11.53%) and F1 score (by up to 7.91%). Hence, this adaptive, data-driven, entropy-based technique is an efficient tool for extracting useful information from noisy data in the time- frequency domain.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
IP-2020-02-4358
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište Jurja Dobrile u Puli

Citiraj ovu publikaciju:

Vranković, Ana; Lerga, Jonatan; Saulig, Nicoletta
A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures // EURASIP Journal on Advances in Signal Processing, 18 (2020), 1-19 doi:10.1186/s13634-020-00679-2 (međunarodna recenzija, članak, znanstveni)
Vranković, A., Lerga, J. & Saulig, N. (2020) A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures. EURASIP Journal on Advances in Signal Processing, 18, 1-19 doi:10.1186/s13634-020-00679-2.
@article{article, author = {Vrankovi\'{c}, Ana and Lerga, Jonatan and Saulig, Nicoletta}, year = {2020}, pages = {1-19}, DOI = {10.1186/s13634-020-00679-2}, keywords = {R\'{e}nyi entropy, time-frequency distributions, relative intersection of confidence intervals, adaptive thresholding}, journal = {EURASIP Journal on Advances in Signal Processing}, doi = {10.1186/s13634-020-00679-2}, volume = {18}, issn = {1687-6180}, title = {A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures}, keyword = {R\'{e}nyi entropy, time-frequency distributions, relative intersection of confidence intervals, adaptive thresholding} }
@article{article, author = {Vrankovi\'{c}, Ana and Lerga, Jonatan and Saulig, Nicoletta}, year = {2020}, pages = {1-19}, DOI = {10.1186/s13634-020-00679-2}, keywords = {R\'{e}nyi entropy, time-frequency distributions, relative intersection of confidence intervals, adaptive thresholding}, journal = {EURASIP Journal on Advances in Signal Processing}, doi = {10.1186/s13634-020-00679-2}, volume = {18}, issn = {1687-6180}, title = {A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures}, keyword = {R\'{e}nyi entropy, time-frequency distributions, relative intersection of confidence intervals, adaptive thresholding} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font