Pregled bibliografske jedinice broj: 1058177
Accelerating robot trajectory learning for stochastic tasks
Accelerating robot trajectory learning for stochastic tasks // IEEE access, 1 (2020), 1-1 doi:10.1109/access.2020.2986999 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1058177 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Accelerating robot trajectory learning for
stochastic tasks
Autori
Vidaković, Josip ; Jerbić, Bojan ; Šekoranja, Bojan ; Švaco, Marko ; Šuligoj, Filip
Izvornik
IEEE access (2169-3536) 1
(2020);
1-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Learning from demonstration ; Policy search ; Robot task learning ; Robot trajectory
Sažetak
Learning from demonstration provides ways to transfer knowledge and skills from humans to robots. Models based solely on learning from demonstration often have very good generalization capabilities but are not completely accurate when adapting to new scenarios. This happens especially when learning stochastic tasks because of the correspondence problem and unmodeled physical properties of tasks. On the other hand, reinforcement learning (RL) methods such as policy search have the capability to refine an initial skill through exploration, where the learning process is often very dependent on the initialization strategy and is efficient in finding only local solutions. These two approaches are, therefore, frequently combined. In this paper, we present how the iterative learning of tasks can be accelerated by a learning from demonstration (LfD) method based on the extraction of via-points. The paper provides an evaluation of the approach on two different primitive motion tasks.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Filip Šuligoj
(autor)
Bojan Šekoranja
(autor)
Bojan Jerbić
(autor)
Josip Vidaković
(autor)
Marko Švaco
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus