Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1057786

Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning


Petrović, Luka; Marić, Filip; Marković, Ivan; Petrović, Ivan
Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning // 21st IFAC World Congress
Berlin, Njemačka, 2020. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1057786 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning

Autori
Petrović, Luka ; Marić, Filip ; Marković, Ivan ; Petrović, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
21st IFAC World Congress / - , 2020, 1-6

Skup
21st IFAC World Congress

Mjesto i datum
Berlin, Njemačka, 12.07.2020. - 17.07.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Motion Planning ; Trajectory Optimization ; Gaussian Processes ; Factor Graphs ; Incremental Inference

Sažetak
Trajectory optimization methods for motion planning attempt to generate trajectories that minimize a suitable objective function. While such methods efficiently find solutions in static environments, they need to be ran from scratch multiple times in the presence of moving obstacles, which incurs unnecessary computation and slows down execution. In this paper, we propose a trajectory optimization algorithm that anticipates the movement of obstacles and solves the planning problem in an iterative manner. We employ continuous-time Gaussian processes as trajectory representations both for the mobile robot and moving obstacles for which future locations are predicted according to a given model. We formulate the simultaneous moving obstacles tracking and mobile robot motion planning problem as probabilistic inference on a factor graph. Since trajectories of moving obstacles are optimized concurrently to motion planning, the proposed approach works in a predictive manner. After computing the initial solution, we use incremental inference for online replanning after an estimate of the moving obstacle position is provided. Our experimental evaluation demonstrates that the proposed approach supports online motion generation in the presence of moving obstacles.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Drvna tehnologija



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Petrović (autor)

Avatar Url Ivan Marković (autor)

Avatar Url Luka Petrović (autor)

Avatar Url Filip Marić (autor)


Citiraj ovu publikaciju:

Petrović, Luka; Marić, Filip; Marković, Ivan; Petrović, Ivan
Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning // 21st IFAC World Congress
Berlin, Njemačka, 2020. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Petrović, L., Marić, F., Marković, I. & Petrović, I. (2020) Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning. U: 21st IFAC World Congress.
@article{article, author = {Petrovi\'{c}, Luka and Mari\'{c}, Filip and Markovi\'{c}, Ivan and Petrovi\'{c}, Ivan}, year = {2020}, pages = {1-6}, keywords = {Motion Planning, Trajectory Optimization, Gaussian Processes, Factor Graphs, Incremental Inference}, title = {Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning}, keyword = {Motion Planning, Trajectory Optimization, Gaussian Processes, Factor Graphs, Incremental Inference}, publisherplace = {Berlin, Njema\v{c}ka} }
@article{article, author = {Petrovi\'{c}, Luka and Mari\'{c}, Filip and Markovi\'{c}, Ivan and Petrovi\'{c}, Ivan}, year = {2020}, pages = {1-6}, keywords = {Motion Planning, Trajectory Optimization, Gaussian Processes, Factor Graphs, Incremental Inference}, title = {Gaussian Processes Incremental Inference for Mobile Robots Dynamic Planning}, keyword = {Motion Planning, Trajectory Optimization, Gaussian Processes, Factor Graphs, Incremental Inference}, publisherplace = {Berlin, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font