Pregled bibliografske jedinice broj: 1057653
Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images
Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images // Ieee transactions on intelligent transportation systems, 22 (2020), 8; 4951-4961 doi:10.1109/tits.2020.2984894 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1057653 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Efficient Ladder-Style DenseNets for Semantic
Segmentation of Large Images
Autori
Krešo, Ivan ; Krapac, Josip ; Šegvić, Siniša
Izvornik
Ieee transactions on intelligent transportation systems (1524-9050) 22
(2020), 8;
4951-4961
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
computer vision ; supervised learning ; image segmentation ; road transportation
Sažetak
Recent progress of deep image classification models has provided a great potential for improving related computer vision tasks. However, the transition to semantic segmentation is hampered by strict memory limitations of contemporary GPUs. The extent of feature map caching required by convolutional backprop poses significant challenges even for moderately sized Pascal images, while requiring careful architectural considerations when input resolution is in the megapixel range. To address these concerns, we propose a novel ladder-style DenseNet-based architecture which features high modelling power, efficient upsampling, and inherent spatial efficiency which we unlock with checkpointing. The resulting models deliver high performance and allow training at megapixel resolution on commodity hardware. The presented experimental results outperform the state-of-the-art in terms of prediction accuracy and execution speed on Cityscapes, VOC 2012, CamVid and ROB 2018 datasets. Source code at \url{; ; ; https://github.com/ivankreso/LDN}; ; ; .
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
HRZZ-IP-2013-11-1395 - Detekcija objekata više razreda za pametna vozila i sigurnije ceste (MULTICLOD) (Šegvić, Siniša, HRZZ ) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus