Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 10567

New Methods for Cluster Selection in Unsupervised Fuzzy Clustering


Ćosić, Dubravko; Lončarić, Sven
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering // Proceedings of the 41th Conference KoREMA'96, vol. 4 / Perić, Nedjeljko (ur.).
Opatija, Hrvatska: Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA), 1996. str. 1-3 (poster, nije recenziran, sažetak, znanstveni)


CROSBI ID: 10567 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering

Autori
Ćosić, Dubravko ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Proceedings of the 41th Conference KoREMA'96, vol. 4 / Perić, Nedjeljko - : Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA), 1996, 1-3

Skup
41. Annual Conference KoREMA '96

Mjesto i datum
Opatija, Hrvatska, 18.09.1996. - 20.09.1996

Vrsta sudjelovanja
Poster

Vrsta recenzije
Nije recenziran

Ključne riječi
image processing; image analysis; image segmentation;fuzzy clustering

Sažetak
Cluster analysis has been playing an important role in solving many problems in pattern recognition and image processing. The fuzzy clustering has been widely used in pattern recognition to search for substructures in a multidimensional data space. Unsupervised clustering algorithms have a variable number of clusters as opposed to supervised clustering algorithms. Unsupervised clustering algorithms utilize various criteria to decide if and how to introduce a new cluster center. Three new methods for selection of a new cluster center in the K-means fuzzy clustering algorithm are presented in this paper. The comparison of new techniques is done with respect to cluster validity and speed of convergence. The technique is applied to the problem of segmentation of human head images obtained by Computed Tomography (CT). Experiments have been performed to compare the proposed techniques with respect to convergence speed and cluster validity measures.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
036024

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Sven Lončarić (autor)


Citiraj ovu publikaciju:

Ćosić, Dubravko; Lončarić, Sven
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering // Proceedings of the 41th Conference KoREMA'96, vol. 4 / Perić, Nedjeljko (ur.).
Opatija, Hrvatska: Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA), 1996. str. 1-3 (poster, nije recenziran, sažetak, znanstveni)
Ćosić, D. & Lončarić, S. (1996) New Methods for Cluster Selection in Unsupervised Fuzzy Clustering. U: Perić, N. (ur.)Proceedings of the 41th Conference KoREMA'96, vol. 4.
@article{article, author = {\'{C}osi\'{c}, Dubravko and Lon\v{c}ari\'{c}, Sven}, editor = {Peri\'{c}, N.}, year = {1996}, pages = {1-3}, keywords = {image processing, image analysis, image segmentation, fuzzy clustering}, title = {New Methods for Cluster Selection in Unsupervised Fuzzy Clustering}, keyword = {image processing, image analysis, image segmentation, fuzzy clustering}, publisher = {Hrvatsko dru\v{s}tvo za komunikacije, ra\v{c}unarstvo, elektroniku, mjerenja I automatiku (KoREMA)}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {\'{C}osi\'{c}, Dubravko and Lon\v{c}ari\'{c}, Sven}, editor = {Peri\'{c}, N.}, year = {1996}, pages = {1-3}, keywords = {image processing, image analysis, image segmentation, fuzzy clustering}, title = {New Methods for Cluster Selection in Unsupervised Fuzzy Clustering}, keyword = {image processing, image analysis, image segmentation, fuzzy clustering}, publisher = {Hrvatsko dru\v{s}tvo za komunikacije, ra\v{c}unarstvo, elektroniku, mjerenja I automatiku (KoREMA)}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font