Pregled bibliografske jedinice broj: 10567
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering // Proceedings of the 41th Conference KoREMA'96, vol. 4 / Perić, Nedjeljko (ur.).
Opatija, Hrvatska: Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA), 1996. str. 1-3 (poster, nije recenziran, sažetak, znanstveni)
CROSBI ID: 10567 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
New Methods for Cluster Selection in Unsupervised Fuzzy Clustering
Autori
Ćosić, Dubravko ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Proceedings of the 41th Conference KoREMA'96, vol. 4
/ Perić, Nedjeljko - : Hrvatsko društvo za komunikacije, računarstvo, elektroniku, mjerenja I automatiku (KoREMA), 1996, 1-3
Skup
41. Annual Conference KoREMA '96
Mjesto i datum
Opatija, Hrvatska, 18.09.1996. - 20.09.1996
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
image processing; image analysis; image segmentation;fuzzy clustering
Sažetak
Cluster analysis has been playing an important role in solving
many problems in pattern recognition and image processing.
The fuzzy clustering has been widely used in pattern recognition to search for
substructures in a multidimensional data space.
Unsupervised clustering algorithms have a variable number of clusters
as opposed to supervised clustering algorithms.
Unsupervised clustering algorithms utilize various criteria to decide
if and how to introduce a new cluster center.
Three new methods for selection of a new cluster center
in the K-means fuzzy clustering algorithm are presented in this paper.
The comparison of new techniques is done with respect to
cluster validity and speed of convergence.
The technique is applied to the problem of segmentation of
human head images obtained by Computed Tomography (CT).
Experiments have been performed to compare the proposed techniques
with respect to convergence speed and cluster validity measures.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
036024
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Sven Lončarić
(autor)