Pregled bibliografske jedinice broj: 1055302
Energy Loss Analysis at the Gland Seals of a Marine Turbo-Generator Steam Turbine
Energy Loss Analysis at the Gland Seals of a Marine Turbo-Generator Steam Turbine // Tehnički glasnik - Technical Journal, Vol. 14 (2020), No. 1; 19-26 doi:10.31803/tg-20191031094436 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1055302 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Energy Loss Analysis at the Gland Seals of a
Marine Turbo-Generator Steam Turbine
Autori
Kocijel, Lino ; Poljak, Igor ; Mrzljak, Vedran ; Car, Zlatan
Izvornik
Tehnički glasnik - Technical Journal (1846-6168) Vol. 14
(2020), No. 1;
19-26
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
energy loss ; gland seal ; marine steam turbine ; turbine efficiency
Sažetak
The paper presents an analysis of marine Turbo- Generator Steam Turbine (TGST) energy losses at turbine gland seals. The analyzed TGST is one of two identical Turbo-Generator Steam Turbines mounted in the steam propulsion plant of a commercial LNG carrier. Research is based on the TGST measurement data obtained during exploitation at three different loads. The turbine front gland seal is the most important element which defines TGST operating parameters, energy losses and energy efficiencies. The front gland seal should have as many chambers as possible in order to minimize the leaked steam mass flow rate, which will result in a turbine energy losses’ decrease and in an increase in energy efficiency. The steam mass flow rate leakage through the TGST rear gland seal has a low or negligible influence on turbine operating parameters, energy losses and energy efficiencies. The highest turbine energy efficiencies are noted at a high load – on which TGST operation is preferable.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
IP-2018-01-3739 - Sustav potpore odlučivanju za zeleniju i sigurniju plovidbu brodova (DESSERT) (Prpić-Oršić, Jasna, HRZZ - 2018-01) ( CroRIS)
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
CEEPUS CIII-HR-0108
DATACROSS KK.01.1.1.01.0009
uniri‐tehnic‐18‐18‐1146
uniri-tehnic-18-275-1447
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Zadru
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)