Pregled bibliografske jedinice broj: 1054963
Ambient seismic noise suppression in COST action G2Net
Ambient seismic noise suppression in COST action G2Net // EGU General Assembly 2020
Beč, Austrija; online, 2020. str. - doi:10.5194/egusphere-egu2020-22165 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1054963 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Ambient seismic noise suppression in COST action
G2Net
Autori
Ilić, Velimir ; Bertolini, Alessandro ; Bonsignorio, Fabio ; Jozinović, Dario ; Bulik, Tomasz ; Štajduhar, Ivan ; Secrieru, Iulian ; Koley, Soumen
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
EGU General Assembly 2020
Mjesto i datum
Beč, Austrija; online, 04.05.2020. - 08.05.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
gravitational waves ; seismic noise ; machine learning
Sažetak
The analysis of low-frequency gravitational waves (GW) data is a crucial mission of GW science and the performance of Earth-based GW detectors is largely influenced by ability of combating the low-frequency ambient seismic noise and other seismic influences. This tasks require multidisciplinary research in the fields of seismic sensing, signal processing, robotics, machine learning and mathematical modeling. In practice, this kind of research is conducted by large teams of researchers with different expertise, so that project management emerges as an important real life challenge in the projects for acquisition, processing and interpretation of seismic data from GW detector site. A prominent example that successfully deals with this aspect could be observed in the COST Action G2Net (CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning) and its seismic research group, which counts more than 30 members. In this talk we will review the structure of the group, present the goals and recent activities of the group, and present new methods for combating the seismic influences at GW detector site that will be developed and applied within this collaboration. This publication is based upon work from CA17137 - A network for Gravitational Waves, Geophysics and Machine Learning, supported by COST (European Cooperation in Science and Technology).
Izvorni jezik
Engleski
Znanstvena područja
Geofizika, Računarstvo
POVEZANOST RADA
Projekti:
CA17137 - Mreža za gravitacijske valove, geofiziku i strojno učenje (G2NET) (COST ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Ivan Štajduhar
(autor)