Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1051659

Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation


Petricioli, Lucija; Humski, Luka; Vranic, Mihaela; Pintar, Damir
Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation // IEEE Access, 8 (2020), 1; 33013-33022 doi:10.1109/access.2020.2970862 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1051659 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation

Autori
Petricioli, Lucija ; Humski, Luka ; Vranic, Mihaela ; Pintar, Damir

Izvornik
IEEE Access (2169-3536) 8 (2020), 1; 33013-33022

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Correlation matrix ; data distribution ; social graph ; synthetic data generation

Sažetak
Nowadays, data created through the usage of different services are most commonly not available to the average researcher. Security and privacy have become a top concern, which has further restricted access to certain real- life data, especially holding true for social networks. This is why synthetic data generators have become a very important area of research, particularly synthetic social graph generators. However, even today, such generators mostly create graphs that contain just the information whether two nodes are connected. Fortunately, there is an existing conceptual solution for an expanded social graph generator that aims to generate synthetic graphs containing multiple weighted edges between nodes, thus showing various types of relationships among those nodes, all based on known real-life data characteristics. One of its proposed steps is the generation of necessary data according to provided distributions and correlations. This paper focuses on the generation of such data by adapting an existing iterative algorithm for non-normal multivariate data simulation to generate synthetic data based on the publicly available distributions and correlations of Facebook interaction parameters. It is shown that the characteristics of the generated synthetic data are similar to the known characteristics of the real-life data, proving that the chosen algorithm, along with the accompanying alterations, can be used as one of the steps within the process of generating a synthetic expanded social graph.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
KK.01.2.1.01.0041

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mihaela Vranić (autor)

Avatar Url Luka Humski (autor)

Avatar Url Lucija Petricioli (autor)

Avatar Url Damir Pintar (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Petricioli, Lucija; Humski, Luka; Vranic, Mihaela; Pintar, Damir
Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation // IEEE Access, 8 (2020), 1; 33013-33022 doi:10.1109/access.2020.2970862 (međunarodna recenzija, članak, znanstveni)
Petricioli, L., Humski, L., Vranic, M. & Pintar, D. (2020) Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation. IEEE Access, 8 (1), 33013-33022 doi:10.1109/access.2020.2970862.
@article{article, author = {Petricioli, Lucija and Humski, Luka and Vranic, Mihaela and Pintar, Damir}, year = {2020}, pages = {33013-33022}, DOI = {10.1109/access.2020.2970862}, keywords = {Correlation matrix, data distribution, social graph, synthetic data generation}, journal = {IEEE Access}, doi = {10.1109/access.2020.2970862}, volume = {8}, number = {1}, issn = {2169-3536}, title = {Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation}, keyword = {Correlation matrix, data distribution, social graph, synthetic data generation} }
@article{article, author = {Petricioli, Lucija and Humski, Luka and Vranic, Mihaela and Pintar, Damir}, year = {2020}, pages = {33013-33022}, DOI = {10.1109/access.2020.2970862}, keywords = {Correlation matrix, data distribution, social graph, synthetic data generation}, journal = {IEEE Access}, doi = {10.1109/access.2020.2970862}, volume = {8}, number = {1}, issn = {2169-3536}, title = {Data Set Synthesis Based on Known Correlations and Distributions for Expanded Social Graph Generation}, keyword = {Correlation matrix, data distribution, social graph, synthetic data generation} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font