Pregled bibliografske jedinice broj: 1051619
Educational data mining using cluster analysis and decision tree technique: A case study
Educational data mining using cluster analysis and decision tree technique: A case study // International Journal of Engineering Business Management, 12 (2020), 1-9 doi:10.1177/1847979020908675 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1051619 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Educational data mining using cluster analysis and decision tree technique: A case study
Autori
Križanić, Snježana
Izvornik
International Journal of Engineering Business Management (1847-9790) 12
(2020);
1-9
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Educational data mining, cluster analysis, decision trees, case study, log file
Sažetak
Data mining refers to the application of data analysis techniques with the aim of extracting hidden knowledge from data by performing the tasks of pattern recognition and predictive modeling. This article describes the application of data mining techniques on educational data of a higher education institution in Croatia. Data used for the analysis are event logs downloaded from an e-learning environment of a real e- course. Data mining techniques applied for the research are cluster analysis and decision tree. The cluster analysis was performed by organizing collections of patterns into groups based on student behavior similarity in using course materials. Decision tree was the method of interest for generating a representation of decision-making that allowed defining classes of objects for the purpose of deeper analysis about how students learned.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Snježana Križanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus