Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1051019

Dimensionality Reduction for Non-linear Local Segmentation and Profiling


Grgić, Demijan; Podobnik, Vedran
Dimensionality Reduction for Non-linear Local Segmentation and Profiling // Proceedings of the 4th International Workshop on Data Science (IWDS 2019) / Lončarić, Sven (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019. str. 1-2 (poster, domaća recenzija, prošireni sažetak, znanstveni)


CROSBI ID: 1051019 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Dimensionality Reduction for Non-linear Local Segmentation and Profiling

Autori
Grgić, Demijan ; Podobnik, Vedran

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, prošireni sažetak, znanstveni

Izvornik
Proceedings of the 4th International Workshop on Data Science (IWDS 2019) / Lončarić, Sven - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019, 1-2

Skup
4rd International Workshop on Data Science (IWDS 2019)

Mjesto i datum
Zagreb, Hrvatska, 15.10.2019

Vrsta sudjelovanja
Poster

Vrsta recenzije
Domaća recenzija

Ključne riječi
Machine Learning ; Dimensionality Reduction ; Segmentation ; Profiling

Sažetak
Growth of data collection on consumer behavior has created a huge explosion in dimensionality of the collected feature space. As a consequence of the expanding feature space, the curse of the dimensionality produces sparsity of data creating issues for machine learning as the amount of data to obtain statistically sound results increases exponentially. Dimension projection techniques are used to combat the problem by reducing and compressing the feature space to a more manageable size using transformations of the original space into a lower dimensional structure. The key goal of feature projection is the extraction of key behavioral information with the reduction of redundant or unnecessary information in the original feature space. The expected result of the feature projection is a lower-dimensional space that still adequately describes original data with "minimal" loss of information.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Demijan Grgić (autor)

Avatar Url Vedran Podobnik (autor)


Citiraj ovu publikaciju:

Grgić, Demijan; Podobnik, Vedran
Dimensionality Reduction for Non-linear Local Segmentation and Profiling // Proceedings of the 4th International Workshop on Data Science (IWDS 2019) / Lončarić, Sven (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019. str. 1-2 (poster, domaća recenzija, prošireni sažetak, znanstveni)
Grgić, D. & Podobnik, V. (2019) Dimensionality Reduction for Non-linear Local Segmentation and Profiling. U: Lončarić, S. (ur.)Proceedings of the 4th International Workshop on Data Science (IWDS 2019).
@article{article, author = {Grgi\'{c}, Demijan and Podobnik, Vedran}, editor = {Lon\v{c}ari\'{c}, S.}, year = {2019}, pages = {1-2}, keywords = {Machine Learning, Dimensionality Reduction, Segmentation, Profiling}, title = {Dimensionality Reduction for Non-linear Local Segmentation and Profiling}, keyword = {Machine Learning, Dimensionality Reduction, Segmentation, Profiling}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Grgi\'{c}, Demijan and Podobnik, Vedran}, editor = {Lon\v{c}ari\'{c}, S.}, year = {2019}, pages = {1-2}, keywords = {Machine Learning, Dimensionality Reduction, Segmentation, Profiling}, title = {Dimensionality Reduction for Non-linear Local Segmentation and Profiling}, keyword = {Machine Learning, Dimensionality Reduction, Segmentation, Profiling}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font