Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1050766

Estimating Biological Gender from Panoramic Dental X-Ray Images


Milošević, Denis; Vodanović, Marin; Galić, Ivan; Šubašić, Marko
Estimating Biological Gender from Panoramic Dental X-Ray Images // Proceedings of 11th International Symposium on Image and Signal Processing and Analysis
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019. str. 105-110 doi:10.1109/ispa.2019.8868804 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1050766 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Estimating Biological Gender from Panoramic Dental X-Ray Images

Autori
Milošević, Denis ; Vodanović, Marin ; Galić, Ivan ; Šubašić, Marko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 11th International Symposium on Image and Signal Processing and Analysis / - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019, 105-110

ISBN
978-1-7281-3140-5

Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)

Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
forensic odontology ; x-ray image analysis ; convolutional neural network ; deep learning ; machine learning ; image processing

Sažetak
Identifying the gender of a person is one of the fundamental tasks in forensic medicine. One possible application is right after a catastrophic event such as a mass disaster with a high victim count. In such cases it is necessary to identify the people involved which can require a high number of forensic experts, depending on the scale of the event. With panoramic dental x-ray images the biological gender of a person can be estimated by analyzing skeletal structures that express sexual dimorphism. Current methods require the manual measurement of a wide array of mandibular parameters which are then manually compared to references based on these measurements and assumed ethnicity of the people involved. We propose an automated solution based on deep learning techniques using convolutional neural networks. Our data consists of 4000 panoramic dental x-ray images of patients with European origin, with the images being taken by a wide range of orthopantomographs. Our automated method can estimate 64 images per second on contemporary hardware, it doesn’t require human intervention for estimation and it achieves state-of-the-art results with an accuracy of 96.87% ± 0.96%.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Stomatološki fakultet, Zagreb,
Medicinski fakultet, Split

Profili:

Avatar Url Marin Vodanović (autor)

Avatar Url Denis Milošević (autor)

Avatar Url Marko Subašić (autor)

Avatar Url Ivan Galić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Milošević, Denis; Vodanović, Marin; Galić, Ivan; Šubašić, Marko
Estimating Biological Gender from Panoramic Dental X-Ray Images // Proceedings of 11th International Symposium on Image and Signal Processing and Analysis
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019. str. 105-110 doi:10.1109/ispa.2019.8868804 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Milošević, D., Vodanović, M., Galić, I. & Šubašić, M. (2019) Estimating Biological Gender from Panoramic Dental X-Ray Images. U: Proceedings of 11th International Symposium on Image and Signal Processing and Analysis doi:10.1109/ispa.2019.8868804.
@article{article, author = {Milo\v{s}evi\'{c}, Denis and Vodanovi\'{c}, Marin and Gali\'{c}, Ivan and \v{S}uba\v{s}i\'{c}, Marko}, year = {2019}, pages = {105-110}, DOI = {10.1109/ispa.2019.8868804}, keywords = {forensic odontology, x-ray image analysis, convolutional neural network, deep learning, machine learning, image processing}, doi = {10.1109/ispa.2019.8868804}, isbn = {978-1-7281-3140-5}, title = {Estimating Biological Gender from Panoramic Dental X-Ray Images}, keyword = {forensic odontology, x-ray image analysis, convolutional neural network, deep learning, machine learning, image processing}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Milo\v{s}evi\'{c}, Denis and Vodanovi\'{c}, Marin and Gali\'{c}, Ivan and \v{S}uba\v{s}i\'{c}, Marko}, year = {2019}, pages = {105-110}, DOI = {10.1109/ispa.2019.8868804}, keywords = {forensic odontology, x-ray image analysis, convolutional neural network, deep learning, machine learning, image processing}, doi = {10.1109/ispa.2019.8868804}, isbn = {978-1-7281-3140-5}, title = {Estimating Biological Gender from Panoramic Dental X-Ray Images}, keyword = {forensic odontology, x-ray image analysis, convolutional neural network, deep learning, machine learning, image processing}, publisher = {Fakultet elektrotehnike i ra\v{c}unarstva Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Dubrovnik, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font