Pregled bibliografske jedinice broj: 1050766
Estimating Biological Gender from Panoramic Dental X-Ray Images
Estimating Biological Gender from Panoramic Dental X-Ray Images // Proceedings of 11th International Symposium on Image and Signal Processing and Analysis
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019. str. 105-110 doi:10.1109/ispa.2019.8868804 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1050766 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimating Biological Gender from Panoramic Dental
X-Ray Images
Autori
Milošević, Denis ; Vodanović, Marin ; Galić, Ivan ; Šubašić, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 11th International Symposium on Image and Signal Processing and Analysis
/ - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2019, 105-110
ISBN
978-1-7281-3140-5
Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)
Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
forensic odontology ; x-ray image analysis ; convolutional neural network ; deep learning ; machine learning ; image processing
Sažetak
Identifying the gender of a person is one of the fundamental tasks in forensic medicine. One possible application is right after a catastrophic event such as a mass disaster with a high victim count. In such cases it is necessary to identify the people involved which can require a high number of forensic experts, depending on the scale of the event. With panoramic dental x-ray images the biological gender of a person can be estimated by analyzing skeletal structures that express sexual dimorphism. Current methods require the manual measurement of a wide array of mandibular parameters which are then manually compared to references based on these measurements and assumed ethnicity of the people involved. We propose an automated solution based on deep learning techniques using convolutional neural networks. Our data consists of 4000 panoramic dental x-ray images of patients with European origin, with the images being taken by a wide range of orthopantomographs. Our automated method can estimate 64 images per second on contemporary hardware, it doesn’t require human intervention for estimation and it achieves state-of-the-art results with an accuracy of 96.87% ± 0.96%.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Stomatološki fakultet, Zagreb,
Medicinski fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)