Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1048240

How accurately stock market expectations can be predicted?


Čuljak, Maria; Arnerić, Josip; Žiković, Saša
How accurately stock market expectations can be predicted? // Economics of Digital Transformation (EDT) - DIGITOMICS 2019 / Drezgić, Saša (ur.).
Rijeka: Ekonomski fakultet Sveučilišta u Rijeci, 2019. 13, 2 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1048240 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
How accurately stock market expectations can be predicted?

Autori
Čuljak, Maria ; Arnerić, Josip ; Žiković, Saša

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Economics of Digital Transformation (EDT) - DIGITOMICS 2019 / Drezgić, Saša - Rijeka : Ekonomski fakultet Sveučilišta u Rijeci, 2019

ISBN
978-953-7813-45-1

Skup
2nd International Scientific Conference Economics of Digital Transformation DIGITOMIC (EDT 2019)

Mjesto i datum
Opatija, Hrvatska, 02.05.2019. - 04.05.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
High frequency data ; option pricing models ; probability density function ; benchmark

Sažetak
This research is about the use of high frequency data for determining the prognostic power of the option pricing models. This research aims to forecast the future trends in the expectation, variance and other moments of the financial time series. The financial time series that are the scope of this research are the put and call options of European market indices. The research involves two steps. The first step is the estimation phase of forecasting the probability density function of the observed financial time series. The second step is a comparison of the estimated probability density functions with a benchmark density function based on high frequency data. The subject of research are the option pricing models used to predict the future risk neutral probability density function. The aim is to estimate and compare option pricing models. The purpose is to evaluate their prognostic power and to asses which of them has the best fit. This study gives estimation of probability density function of DAX index on specified expiration date and comparison with the benchmark density function. There are limitations in the use of high frequency data on illiquid financial markets and therefore the lack of data to analyse. The results provide the contribution to the existing literature as the benchmark density function is the one on the basis of high frequency data. Methods of comparing the benchmark density function with the estimated risk neutral probability function give applicative results for market participants and public authorities. Provided results give better insights in high frequency data issues and therefore motivation for a further research regarding volatility estimation.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
uniri-drustv-18-228
ZP 3/18
UIP-2013-11-5199 - Mjerenje, modliranje i prognoziranje volatilnosti (Volatility) (Arnerić, Josip, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Ekonomski fakultet, Zagreb,
Ekonomski fakultet, Rijeka

Profili:

Avatar Url Saša Žiković (autor)

Avatar Url Josip Arnerić (autor)

Poveznice na cjeloviti tekst rada:

www.edt-conference.com

Citiraj ovu publikaciju:

Čuljak, Maria; Arnerić, Josip; Žiković, Saša
How accurately stock market expectations can be predicted? // Economics of Digital Transformation (EDT) - DIGITOMICS 2019 / Drezgić, Saša (ur.).
Rijeka: Ekonomski fakultet Sveučilišta u Rijeci, 2019. 13, 2 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Čuljak, M., Arnerić, J. & Žiković, S. (2019) How accurately stock market expectations can be predicted?. U: Drezgić, S. (ur.)Economics of Digital Transformation (EDT) - DIGITOMICS 2019.
@article{article, author = {\v{C}uljak, Maria and Arneri\'{c}, Josip and \v{Z}ikovi\'{c}, Sa\v{s}a}, editor = {Drezgi\'{c}, S.}, year = {2019}, pages = {2}, chapter = {13}, keywords = {High frequency data, option pricing models, probability density function, benchmark}, isbn = {978-953-7813-45-1}, title = {How accurately stock market expectations can be predicted?}, keyword = {High frequency data, option pricing models, probability density function, benchmark}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Opatija, Hrvatska}, chapternumber = {13} }
@article{article, author = {\v{C}uljak, Maria and Arneri\'{c}, Josip and \v{Z}ikovi\'{c}, Sa\v{s}a}, editor = {Drezgi\'{c}, S.}, year = {2019}, pages = {2}, chapter = {13}, keywords = {High frequency data, option pricing models, probability density function, benchmark}, isbn = {978-953-7813-45-1}, title = {How accurately stock market expectations can be predicted?}, keyword = {High frequency data, option pricing models, probability density function, benchmark}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Opatija, Hrvatska}, chapternumber = {13} }




Contrast
Increase Font
Decrease Font
Dyslexic Font