Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1047294

Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison


Škrabić Perić, Blanka
Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison // Croatian operational research review, 10 (2019), 1; 45-54 doi:10.17535/crorr.2019.0005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1047294 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison

Autori
Škrabić Perić, Blanka

Izvornik
Croatian operational research review (1848-0225) 10 (2019), 1; 45-54

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
dynamic panel data, GMM estimators, LSDV bias-corrected, small sample

Sažetak
Di erenced GMM and system GMM estimators are the two most frequently used dynamic panel estimators. Regardless the fact that both estimators are proposed for samples with a large N and short T, both of them are frequently used for small samples. Therefore, this paper compares the small sample properties of these two estimators with standard dynamic LSDV and LSDV bias- corrected estimators to examine the justi cation of their frequent use. Data set dimensions are formed considering dimensions of previous empirical studies that use dynamic panel data on small samples. The results show that LSDV bias-corrected estimator has the smallest RMSE in almost every design while in terms of bias, the results are mixed. LSDV bias-corrected outperforms both GMM estimators in terms of bias in design when the number of individuals is 10 and the number of time periods is 30. GMM estimators show somewhat better properties in terms of bias in design when the number of individuals is 30 and the number of time periods is 10.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
HRZZ-UIP-2013-11-5199 - Mjerenje, modliranje i prognoziranje volatilnosti (Volatility) (Arnerić, Josip, HRZZ - 2013-11) ( CroRIS)

Ustanove:
Ekonomski fakultet, Split

Profili:

Avatar Url Blanka Škrabić Perić (autor)

Poveznice na cjeloviti tekst rada:

doi hrcak.srce.hr

Citiraj ovu publikaciju:

Škrabić Perić, Blanka
Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison // Croatian operational research review, 10 (2019), 1; 45-54 doi:10.17535/crorr.2019.0005 (međunarodna recenzija, članak, znanstveni)
Škrabić Perić, B. (2019) Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison. Croatian operational research review, 10 (1), 45-54 doi:10.17535/crorr.2019.0005.
@article{article, author = {\v{S}krabi\'{c} Peri\'{c}, Blanka}, year = {2019}, pages = {45-54}, DOI = {10.17535/crorr.2019.0005}, keywords = {dynamic panel data, GMM estimators, LSDV bias-corrected, small sample}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2019.0005}, volume = {10}, number = {1}, issn = {1848-0225}, title = {Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison}, keyword = {dynamic panel data, GMM estimators, LSDV bias-corrected, small sample} }
@article{article, author = {\v{S}krabi\'{c} Peri\'{c}, Blanka}, year = {2019}, pages = {45-54}, DOI = {10.17535/crorr.2019.0005}, keywords = {dynamic panel data, GMM estimators, LSDV bias-corrected, small sample}, journal = {Croatian operational research review}, doi = {10.17535/crorr.2019.0005}, volume = {10}, number = {1}, issn = {1848-0225}, title = {Do the most frequently used dynamic panel data estimators have the best performance in a small sample? A Monte Carlo comparison}, keyword = {dynamic panel data, GMM estimators, LSDV bias-corrected, small sample} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font