Pregled bibliografske jedinice broj: 1046451
Using deep-learning artificial intelligence to resolve the mechanistic relationship between Alzheimer's disease and gut microbiota
Using deep-learning artificial intelligence to resolve the mechanistic relationship between Alzheimer's disease and gut microbiota // Book of Abstracts
Osijek, Hrvatska, 2017. str. 31-31 (pozvano predavanje, domaća recenzija, sažetak, ostalo)
CROSBI ID: 1046451 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using deep-learning artificial intelligence to
resolve the mechanistic relationship between
Alzheimer's disease and gut microbiota
Autori
Šimić, Goran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo
Izvornik
Book of Abstracts
/ - , 2017, 31-31
Skup
6th Croatian Neuroscience Congress
Mjesto i datum
Osijek, Hrvatska, 16.09.2017. - 18.09.2017
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Alzheimer's disease ; gut microbiota ; deep-learning ; artificial intelligence ; nitric oxide synthase ; Lactobacillus ; serotonin ; ABC cholesterol transporters
Sažetak
Recently emerging “deep learning” systems and artificial neural networks need not be programmed exclusively with a human expert’s knowledge. Instead, they can learn on their own, often from big datasets that are far larger than humans can cope with, until they can see patterns. In two recently published studies (Gubiani et al., Expert Syst. Appl., 2017 ; Cestnik et al., Genomics Comp. Biol., 2017) authors used the literature mining tools of OntoGen to document clustering and CrossBee for cross-domain bridging term exploration to search for hidden relations in scientific papers from two domains of interest, Alzheimer’s disease and gut microbiome. The results supported the hypothesis of the neuroinflammatory nature of Alzheimer’s disease and identified several potential links: nitric oxide synthase, Lactobacillus, bile acid (ABC transporters), and serotonin. However, as advanced artificial intelligence systems cannot explain their logic and the computations that lead to an outcome remain hidden, I will make an attempt to open up the black box of machine thinking behind these discoveries, and provide insights about the mechanisms that led to the outcomes to help interpreting the associations observed.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Temeljne medicinske znanosti, Kliničke medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Projekti:
--IP-2014-09-9730 - Hiperfosforilacija, agregacija i transsinaptički prijenos tau proteina u Alzheimerovoj bolesti: analiza likvora i ispitivanje potencijalnih neuroprotektivnih spojeva (ALZTAUPROTECT) (Šimić, Goran) ( CroRIS)
Ustanove:
Medicinski fakultet, Zagreb
Profili:
Goran Šimić
(autor)