Pregled bibliografske jedinice broj: 1045506
Expert System for Urban Multimodal Mobility Estimation Based on Information from Public Mobile Network
Expert System for Urban Multimodal Mobility Estimation Based on Information from Public Mobile Network // Computational Science and Its Applications - ICCSA 2019 / Misra, Sanjay ; Gervasi, Osvaldo ; Murgante, Beniamino ; Stankova, Elena ; Korkhov, Vladimir ; Torre, Carmelo ; Rocha, Ana Maria A.C. ; Taniar, David ; Apduhan, Bernady O. ; Tarantino, Eufemia (ur.).
Sankt Peterburg, Ruska Federacija: Springer, 2019. str. 3-11 doi:10.1007/978-3-030-24296-1_1 (pozvano predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1045506 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Expert System for Urban Multimodal Mobility Estimation Based on Information from Public Mobile Network
Autori
Vidović, Krešimir ; Mandžuka, Sadko ; Šoštarić, Marko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Computational Science and Its Applications - ICCSA 2019
/ Misra, Sanjay ; Gervasi, Osvaldo ; Murgante, Beniamino ; Stankova, Elena ; Korkhov, Vladimir ; Torre, Carmelo ; Rocha, Ana Maria A.C. ; Taniar, David ; Apduhan, Bernady O. ; Tarantino, Eufemia - : Springer, 2019, 3-11
ISBN
978-3-030-24295-4
Skup
19th International Conference on Computational Science and Its Applications (ICCSA 2019)
Mjesto i datum
Sankt Peterburg, Ruska Federacija, 01.07.2019. - 04.07.2019
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Urban mobility ; Multimodality ; ANFIS ; Mobile communication network ; Call detail record
Sažetak
Paper present new approach of urban multimodal mobility (UMM) estimation using anonymized data from public mobile network (PMN). The data set is derived from Call Data Records database, and urban multimodal mobility indicators were defined and relativized. Usage of indicators relativized values ensures that they can be applied for mobility estimation in all urban environment regardless of their physical differences, with existing public mobile network as single prerequisite. Travel mode classification is based on Adaptive Neuro Fuzzy Inference System (ANFIS) and trained using set of rules that were determined using method of surveying experts in domain of urban mobility. Accurate estimate creates a foundation for improvement of existing end creation of new services in urban mobility. Also, this approach has potential through implementation within advanced applications of Intelligent Transport Systems with the goal to improve travel modal shift, passenger comfort, efficiency of urban transport etc.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport
Napomena
Lecture Notes in Computer Science book series (LNCS, volume 11620)
POVEZANOST RADA
Ustanove:
Ericsson Nikola Tesla d.d.,
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Conference Proceedings Citation Index - Science (CPCI-S)
- Scopus