Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1045324

Artificial neural network for predicting values of residuary resistance per unit weight of displacement


Baressi Šegota, Sandi; Anđelić, Nikola; Kudláček, Jan; Čep, Robert
Artificial neural network for predicting values of residuary resistance per unit weight of displacement // Pomorski zbornik, 57 (2019), 1; 9-22 doi:10.18048/2019.57.01. (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1045324 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Artificial neural network for predicting values of residuary resistance per unit weight of displacement

Autori
Baressi Šegota, Sandi ; Anđelić, Nikola ; Kudláček, Jan ; Čep, Robert

Izvornik
Pomorski zbornik (0554-6397) 57 (2019), 1; 9-22

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial intelligence ; machine learning ; residuary resistance ; artificial neural network ; multilayer perceptron

Sažetak
This paper proposes the usage of an Artificial neural network (ANN) to predict the values of the residuary resistance per unit weight of displacement from the variables describing ship’s dimensions. For this purpose, a Multilayer perceptron (MLP) regressor ANN is used, with the grid search technique being applied to determine the appropriate properties of the model. After the model training, its quality is determined using R2 value and a Bland-Altman (BA) graph which shows a majority of values predicted falling within the 95% confidence interval. The best model has four hidden layers with ten, twenty, twenty and ten nodes respectively, uses a relu activation function with a constant learning rate of 0.01 and the regularization parameter L2 value of 0.001. The achieved model shows a high regression quality, lacking precision in the higher value range due to the lack of data.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Sandi Baressi Šegota (autor)

Avatar Url Nikola Anđelić (autor)

Citiraj ovu publikaciju:

Baressi Šegota, Sandi; Anđelić, Nikola; Kudláček, Jan; Čep, Robert
Artificial neural network for predicting values of residuary resistance per unit weight of displacement // Pomorski zbornik, 57 (2019), 1; 9-22 doi:10.18048/2019.57.01. (međunarodna recenzija, članak, znanstveni)
Baressi Šegota, S., Anđelić, N., Kudláček, J. & Čep, R. (2019) Artificial neural network for predicting values of residuary resistance per unit weight of displacement. Pomorski zbornik, 57 (1), 9-22 doi:10.18048/2019.57.01..
@article{article, author = {Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Kudl\'{a}\v{c}ek, Jan and \v{C}ep, Robert}, year = {2019}, pages = {9-22}, DOI = {10.18048/2019.57.01.}, keywords = {artificial intelligence, machine learning, residuary resistance, artificial neural network, multilayer perceptron}, journal = {Pomorski zbornik}, doi = {10.18048/2019.57.01.}, volume = {57}, number = {1}, issn = {0554-6397}, title = {Artificial neural network for predicting values of residuary resistance per unit weight of displacement}, keyword = {artificial intelligence, machine learning, residuary resistance, artificial neural network, multilayer perceptron} }
@article{article, author = {Baressi \v{S}egota, Sandi and An\djeli\'{c}, Nikola and Kudl\'{a}\v{c}ek, Jan and \v{C}ep, Robert}, year = {2019}, pages = {9-22}, DOI = {10.18048/2019.57.01.}, keywords = {artificial intelligence, machine learning, residuary resistance, artificial neural network, multilayer perceptron}, journal = {Pomorski zbornik}, doi = {10.18048/2019.57.01.}, volume = {57}, number = {1}, issn = {0554-6397}, title = {Artificial neural network for predicting values of residuary resistance per unit weight of displacement}, keyword = {artificial intelligence, machine learning, residuary resistance, artificial neural network, multilayer perceptron} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font