Pregled bibliografske jedinice broj: 1042747
Object Detection Using Synthesized Data
Object Detection Using Synthesized Data // ICT Innovations 2019, Web Proceedings / Gievska, Sonja ; Madjarov, Gjorgji (ur.).
Ohrid: Springer, 2019. str. 110-124 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1042747 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Object Detection Using Synthesized Data
Autori
Burić, Matija ; Paulin, Goran ; Ivašić-Kos, Marina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
ICT Innovations 2019, Web Proceedings
/ Gievska, Sonja ; Madjarov, Gjorgji - Ohrid : Springer, 2019, 110-124
Skup
11th International Conference ICT Innovations
Mjesto i datum
Ohrid, Sjeverna Makedonija, 17.10.2019. - 19.10.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Object Detection ; Convolutional Neural Network ; YOLO ; Synthesized Data ; Sports ; Handball
Sažetak
Successful object detection, using CNN, requires lots of well-annotated training data which is currently not available for action recognition in the handball domain. Augmenting real-world image dataset with synthesized images is not a novel approach, but the effectiveness of the creation of such a dataset and the quantities of generated images required to improve the detection can be. Starting with relatively small training dataset, by combining traditional 3D modeling with proceduralism and optimizing generator-annotator pipeline to keep rendering and annotating time under 3 FPS, we achieved 3x better detection results, using YOLO, while only tripling the training dataset.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-06-2016-8345
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Marina Ivašić Kos
(autor)