Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1041130

Adaptive learning for disruption prediction in non-stationary conditions


(JET Contributors) Murari, A.; Lungaroni, M.; Gelfusa, M.; Peluso, E.; Vega, J.
Adaptive learning for disruption prediction in non-stationary conditions // Nuclear fusion, 59 (2019), 8; 086037, 11 doi:10.1088/1741-4326/ab1ecc (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1041130 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Adaptive learning for disruption prediction in non-stationary conditions

Autori
Murari, A. ; Lungaroni, M. ; Gelfusa, M. ; Peluso, E. ; Vega, J.

Kolaboracija
JET Contributors

Izvornik
Nuclear fusion (0029-5515) 59 (2019), 8; 086037, 11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
disruptions ; machine learning predictors ; adaptive training ; de-learning ; obsolescence ; ensembles of classifiers

Sažetak
For many years, machine learning tools have proved to be very powerful disruption predictors in tokamaks. On the other hand, the vast majority of the techniques deployed assume that the input data is independent and is sampled from exactly the same probability distribution for the training set, the test set and the final real time deployment. This hypothesis is certainly not verified in practice, since the experimental programmes evolve quite rapidly, resulting typically in ageing of the predictors and consequent suboptimal performance. This paper describes various adaptive training strategies that have been tested to maintain the performance of disruption predictors in non- stationary conditions. The proposed approaches have been implemented using new ensembles of classifiers, explicitly developed for the present application. The improvements in performance are unquestionable and, given the difficulties encountered so far in translating predictors from one device to another, the proposed adaptive methods from scratch can therefore be considered a useful option in the arsenal of alternatives envisaged for the next generation of devices, particularly at the very beginning of their operation.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
EK-H2020-633053 - Provedba aktivnosti opisanih u Roadmap to Fusion tijekom Horizon 2020 kroz Zajednički program članova konzorcija EUROfusion (EUROfusion) (Tadić, Tonči, EK ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Tonči Tadić (autor)

Avatar Url Stjepko Fazinić (autor)

Avatar Url Marin Vukšić (autor)

Poveznice na cjeloviti tekst rada:

doi iopscience.iop.org

Citiraj ovu publikaciju:

(JET Contributors) Murari, A.; Lungaroni, M.; Gelfusa, M.; Peluso, E.; Vega, J.
Adaptive learning for disruption prediction in non-stationary conditions // Nuclear fusion, 59 (2019), 8; 086037, 11 doi:10.1088/1741-4326/ab1ecc (međunarodna recenzija, članak, znanstveni)
(JET Contributors) (JET Contributors) Murari, A., Lungaroni, M., Gelfusa, M., Peluso, E. & Vega, J. (2019) Adaptive learning for disruption prediction in non-stationary conditions. Nuclear fusion, 59 (8), 086037, 11 doi:10.1088/1741-4326/ab1ecc.
@article{article, author = {Murari, A. and Lungaroni, M. and Gelfusa, M. and Peluso, E. and Vega, J.}, year = {2019}, pages = {11}, DOI = {10.1088/1741-4326/ab1ecc}, chapter = {086037}, keywords = {disruptions, machine learning predictors, adaptive training, de-learning, obsolescence, ensembles of classifiers}, journal = {Nuclear fusion}, doi = {10.1088/1741-4326/ab1ecc}, volume = {59}, number = {8}, issn = {0029-5515}, title = {Adaptive learning for disruption prediction in non-stationary conditions}, keyword = {disruptions, machine learning predictors, adaptive training, de-learning, obsolescence, ensembles of classifiers}, chapternumber = {086037} }
@article{article, author = {Murari, A. and Lungaroni, M. and Gelfusa, M. and Peluso, E. and Vega, J.}, year = {2019}, pages = {11}, DOI = {10.1088/1741-4326/ab1ecc}, chapter = {086037}, keywords = {disruptions, machine learning predictors, adaptive training, de-learning, obsolescence, ensembles of classifiers}, journal = {Nuclear fusion}, doi = {10.1088/1741-4326/ab1ecc}, volume = {59}, number = {8}, issn = {0029-5515}, title = {Adaptive learning for disruption prediction in non-stationary conditions}, keyword = {disruptions, machine learning predictors, adaptive training, de-learning, obsolescence, ensembles of classifiers}, chapternumber = {086037} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font