Pregled bibliografske jedinice broj: 1041125
Deep neural networks for plasma tomography with applications to JET and COMPASS
Deep neural networks for plasma tomography with applications to JET and COMPASS // Journal of Instrumentation, 14 (2019), 9; C09011, 8 doi:10.1088/1748-0221/14/09/c09011 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1041125 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep neural networks for plasma tomography with applications to JET and COMPASS
Autori
Carvalho, D.D. ; Ferreira, D.R. ; Carvalho, P.J. ; Imrisek, M. ; Mlynar, J. ; Fernandes, H. ; Tadić, Tonči ; Fazinić, Stjepko ; Vukšić, Marin
Kolaboracija
JET Contributors
Izvornik
Journal of Instrumentation (1748-0221) 14
(2019), 9;
C09011, 8
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Computerized Tomography (CT) and Computed Radiography (CR) ; Plasma diagnostics - interferometry ; spectroscopy and imaging
Sažetak
Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so- called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
Napomena
3rd European Conference on Plasma Diagnostics (ECPD2019)
POVEZANOST RADA
Projekti:
EK-H2020-633053 - Provedba aktivnosti opisanih u Roadmap to Fusion tijekom Horizon 2020 kroz Zajednički program članova konzorcija EUROfusion (EUROfusion) (Tadić, Tonči, EK ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Poveznice na cjeloviti tekst rada:
doi iopscience.iop.org iopscience.iop.org doi.org apps.webofknowledge.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus