Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1041125

Deep neural networks for plasma tomography with applications to JET and COMPASS


(JET Contributors) Carvalho, D.D.; Ferreira, D.R.; Carvalho, P.J.; Imrisek, M.; Mlynar, J.; Fernandes, H.; Tadić, Tonči; Fazinić, Stjepko; Vukšić, Marin
Deep neural networks for plasma tomography with applications to JET and COMPASS // Journal of Instrumentation, 14 (2019), 9; C09011, 8 doi:10.1088/1748-0221/14/09/c09011 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1041125 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep neural networks for plasma tomography with applications to JET and COMPASS

Autori
Carvalho, D.D. ; Ferreira, D.R. ; Carvalho, P.J. ; Imrisek, M. ; Mlynar, J. ; Fernandes, H. ; Tadić, Tonči ; Fazinić, Stjepko ; Vukšić, Marin

Kolaboracija
JET Contributors

Izvornik
Journal of Instrumentation (1748-0221) 14 (2019), 9; C09011, 8

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Computerized Tomography (CT) and Computed Radiography (CR) ; Plasma diagnostics - interferometry ; spectroscopy and imaging

Sažetak
Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so- called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays.

Izvorni jezik
Engleski

Znanstvena područja
Fizika

Napomena
3rd European Conference on Plasma Diagnostics (ECPD2019)



POVEZANOST RADA


Projekti:
EK-H2020-633053 - Provedba aktivnosti opisanih u Roadmap to Fusion tijekom Horizon 2020 kroz Zajednički program članova konzorcija EUROfusion (EUROfusion) (Tadić, Tonči, EK ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Stjepko Fazinić (autor)

Avatar Url Tonči Tadić (autor)

Avatar Url Marin Vukšić (autor)

Citiraj ovu publikaciju:

(JET Contributors) Carvalho, D.D.; Ferreira, D.R.; Carvalho, P.J.; Imrisek, M.; Mlynar, J.; Fernandes, H.; Tadić, Tonči; Fazinić, Stjepko; Vukšić, Marin
Deep neural networks for plasma tomography with applications to JET and COMPASS // Journal of Instrumentation, 14 (2019), 9; C09011, 8 doi:10.1088/1748-0221/14/09/c09011 (međunarodna recenzija, članak, znanstveni)
(JET Contributors) (JET Contributors) Carvalho, D., Ferreira, D., Carvalho, P., Imrisek, M., Mlynar, J., Fernandes, H., Tadić, T., Fazinić, S. & Vukšić, M. (2019) Deep neural networks for plasma tomography with applications to JET and COMPASS. Journal of Instrumentation, 14 (9), C09011, 8 doi:10.1088/1748-0221/14/09/c09011.
@article{article, author = {Carvalho, D.D. and Ferreira, D.R. and Carvalho, P.J. and Imrisek, M. and Mlynar, J. and Fernandes, H. and Tadi\'{c}, Ton\v{c}i and Fazini\'{c}, Stjepko and Vuk\v{s}i\'{c}, Marin}, year = {2019}, pages = {8}, DOI = {10.1088/1748-0221/14/09/c09011}, chapter = {C09011}, keywords = {Computerized Tomography (CT) and Computed Radiography (CR), Plasma diagnostics - interferometry, spectroscopy and imaging}, journal = {Journal of Instrumentation}, doi = {10.1088/1748-0221/14/09/c09011}, volume = {14}, number = {9}, issn = {1748-0221}, title = {Deep neural networks for plasma tomography with applications to JET and COMPASS}, keyword = {Computerized Tomography (CT) and Computed Radiography (CR), Plasma diagnostics - interferometry, spectroscopy and imaging}, chapternumber = {C09011} }
@article{article, author = {Carvalho, D.D. and Ferreira, D.R. and Carvalho, P.J. and Imrisek, M. and Mlynar, J. and Fernandes, H. and Tadi\'{c}, Ton\v{c}i and Fazini\'{c}, Stjepko and Vuk\v{s}i\'{c}, Marin}, year = {2019}, pages = {8}, DOI = {10.1088/1748-0221/14/09/c09011}, chapter = {C09011}, keywords = {Computerized Tomography (CT) and Computed Radiography (CR), Plasma diagnostics - interferometry, spectroscopy and imaging}, journal = {Journal of Instrumentation}, doi = {10.1088/1748-0221/14/09/c09011}, volume = {14}, number = {9}, issn = {1748-0221}, title = {Deep neural networks for plasma tomography with applications to JET and COMPASS}, keyword = {Computerized Tomography (CT) and Computed Radiography (CR), Plasma diagnostics - interferometry, spectroscopy and imaging}, chapternumber = {C09011} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font