Pregled bibliografske jedinice broj: 1038982
Multilayer Perceptron approach to Condition- Based Maintenance of Marine CODLAG Propulsion System Components
Multilayer Perceptron approach to Condition- Based Maintenance of Marine CODLAG Propulsion System Components // Pomorstvo : scientific journal of maritime research, 33 (2020), 2; 181-190 doi:10.31217/p.33.2.8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1038982 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multilayer Perceptron approach to Condition-
Based Maintenance of Marine CODLAG Propulsion
System Components
Autori
Lorencin, Ivan ; Anđelić, Nikola ; Mrzljak, Vedran ; Car, Zlatan
Izvornik
Pomorstvo : scientific journal of maritime research (1332-0718) 33
(2020), 2;
181-190
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Artificial intelligence ; CODLAG Propulsion System Components ; Condition-Based Maintenance ; Multilayer Perceptron
Sažetak
In this paper multilayer perceptron (MLP) approach to condition-based maintenance of combined diesel- electric and gas (CODLAG) marine propulsion system is presented. By using data available in UCI, online machine learning repository, MLPs for prediction of gas turbine (GT) and GT compressor decay state coefficients are designed. Aforementioned MLPs are trained and tested by using 11 934 samples, of which 9 548 samples are used for training and 2 386 samples are used testing. In the case of GT decay state coefficient prediction, the lowest mean relative error of 0.622 % is achieved if MLP with one hidden layer of 50 artificial neurons (AN) designed with Tanh activation function is utilized. This configuration achieves the best results if it is trained by using L-BFGS solver. In the case of GT compressor decay state coefficient, the best results are achieved if MLP is designed with four hidden layers of 100, 50, 50 and 20 ANs, respectively. This configuration is designed by using Logistic sigmoid activation function. The lowest mean relative error of 1.094 % is achieved if MLP is trained by using L- BFGS solver.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
uniri-tehnic-18-275-1447
DATACROSS KK.01.1.1.01.0009
CEEPUS CIII-HR-0108
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus