Pregled bibliografske jedinice broj: 1038356
Conformal embeddings in affine vertex superalgebras
Conformal embeddings in affine vertex superalgebras // Advances in mathematics, 360 (2020), 106918, 50 doi:10.1016/j.aim.2019.106918 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1038356 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Conformal embeddings in affine vertex superalgebras
Autori
Adamović, Dražen ; Möseneder Frajria, Pierluigi ; Papi, Paolo ; Perše, Ozren
Izvornik
Advances in mathematics (0001-8708) 360
(2020);
106918, 50
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Conformal embedding ; Vertex operator algebra ; Affine Lie superalgebra ; Central charge
Sažetak
This paper is a natural continuation of our previous work on conformal embeddings of vertex algebras [6], [7], [8]. Here we consider conformal embeddings in simple affine vertex superalgebra Vk(g) where g=g0¯⊕g1¯ is a basic classical simple Lie superalgebra. Let Vk(g0¯) be the subalgebra of Vk(g) generated by g0¯. We first classify all levels k for which the embedding Vk(g0¯) in Vk(g) is conformal. Next we prove that, for a large family of such conformal levels, Vk(g) is a completely reducible Vk(g0¯)–module and obtain decomposition rules. Proofs are based on fusion rules arguments and on the representation theory of certain affine vertex algebras. The most interesting case is the decomposition of V−2(osp(2n+8|2n)) as a finite, non simple current extension of V−2(Dn+4)⊗V1(Cn). This decomposition uses our previous work [10] on the representation theory of V−2(Dn+4). We also study conformal embeddings gl(n|m)↪sl(n+1|m) and in most cases we obtain decomposition rules.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
ZCI QuantiXLie
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts