Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1038356

Conformal embeddings in affine vertex superalgebras


Adamović, Dražen; Möseneder Frajria, Pierluigi; Papi, Paolo; Perše, Ozren
Conformal embeddings in affine vertex superalgebras // Advances in mathematics, 360 (2020), 106918, 50 doi:10.1016/j.aim.2019.106918 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1038356 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Conformal embeddings in affine vertex superalgebras

Autori
Adamović, Dražen ; Möseneder Frajria, Pierluigi ; Papi, Paolo ; Perše, Ozren

Izvornik
Advances in mathematics (0001-8708) 360 (2020); 106918, 50

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Conformal embedding ; Vertex operator algebra ; Affine Lie superalgebra ; Central charge

Sažetak
This paper is a natural continuation of our previous work on conformal embeddings of vertex algebras [6], [7], [8]. Here we consider conformal embeddings in simple affine vertex superalgebra Vk(g) where g=g0¯⊕g1¯ is a basic classical simple Lie superalgebra. Let Vk(g0¯) be the subalgebra of Vk(g) generated by g0¯. We first classify all levels k for which the embedding Vk(g0¯) in Vk(g) is conformal. Next we prove that, for a large family of such conformal levels, Vk(g) is a completely reducible Vk(g0¯)–module and obtain decomposition rules. Proofs are based on fusion rules arguments and on the representation theory of certain affine vertex algebras. The most interesting case is the decomposition of V−2(osp(2n+8|2n)) as a finite, non simple current extension of V−2(Dn+4)⊗V1(Cn). This decomposition uses our previous work [10] on the representation theory of V−2(Dn+4). We also study conformal embeddings gl(n|m)↪sl(n+1|m) and in most cases we obtain decomposition rules.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
ZCI QuantiXLie

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Dražen Adamović (autor)

Avatar Url Ozren Perše (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com doi.org

Citiraj ovu publikaciju:

Adamović, Dražen; Möseneder Frajria, Pierluigi; Papi, Paolo; Perše, Ozren
Conformal embeddings in affine vertex superalgebras // Advances in mathematics, 360 (2020), 106918, 50 doi:10.1016/j.aim.2019.106918 (međunarodna recenzija, članak, znanstveni)
Adamović, D., Möseneder Frajria, P., Papi, P. & Perše, O. (2020) Conformal embeddings in affine vertex superalgebras. Advances in mathematics, 360, 106918, 50 doi:10.1016/j.aim.2019.106918.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and M\"{o}seneder Frajria, Pierluigi and Papi, Paolo and Per\v{s}e, Ozren}, year = {2020}, pages = {50}, DOI = {10.1016/j.aim.2019.106918}, chapter = {106918}, keywords = {Conformal embedding, Vertex operator algebra, Affine Lie superalgebra, Central charge}, journal = {Advances in mathematics}, doi = {10.1016/j.aim.2019.106918}, volume = {360}, issn = {0001-8708}, title = {Conformal embeddings in affine vertex superalgebras}, keyword = {Conformal embedding, Vertex operator algebra, Affine Lie superalgebra, Central charge}, chapternumber = {106918} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and M\"{o}seneder Frajria, Pierluigi and Papi, Paolo and Per\v{s}e, Ozren}, year = {2020}, pages = {50}, DOI = {10.1016/j.aim.2019.106918}, chapter = {106918}, keywords = {Conformal embedding, Vertex operator algebra, Affine Lie superalgebra, Central charge}, journal = {Advances in mathematics}, doi = {10.1016/j.aim.2019.106918}, volume = {360}, issn = {0001-8708}, title = {Conformal embeddings in affine vertex superalgebras}, keyword = {Conformal embedding, Vertex operator algebra, Affine Lie superalgebra, Central charge}, chapternumber = {106918} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font