Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1034066

Tubular neighborhoods of orbits of power- logarithmic germs


Mardešić, Pavao; Resman, Maja; Rolin, J.P.; Županović, Vesna
Tubular neighborhoods of orbits of power- logarithmic germs // Journal of dynamics and differential equations, 2019 (2019), 8, 49 doi:10.1007/s10884-019-09812-8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1034066 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Tubular neighborhoods of orbits of power- logarithmic germs

Autori
Mardešić, Pavao ; Resman, Maja ; Rolin, J.P. ; Županović, Vesna

Izvornik
Journal of dynamics and differential equations (1040-7294) 2019 (2019); 8, 49

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Dulac map ; Fractal properties of orbits ; ε-Neighborhoods ; Power-logarithm asymptotic expansions ; Transseries ; Formal and analytic invariants ; Embedding in a flow

Sažetak
We consider a class of power-logarithmic germs. We call them parabolic Dulac germs, as they appear as Dulac germs (first-return germs) of hyperbolic polycycles. In view of formal or analytic characterization of such a germ f by fractal properties of several of its orbits, we study the tubular ε-neighborhoods of orbits of f with initial points x0. We denote by A f (x0, ε) the length of such a tubular ε- neighborhood.We show that, even if f is an analytic germ, the function ε → A f (x0, ε) does not have a full asymptotic expansion in ε in the scale of powers and (iterated) logarithms. Hence, this partial asymptotic expansion cannot contain necessary information for analytic classification. In order to overcome this problem, we introduce a new notion: the continuous time length of the ε-neighborhood Ac f (x0, ε). We show that this function has a full transasymptotic expansion in ε in the power, iterated logarithm scale. Moreover, its asymptotic expansion extends the initial, existing part of the asymptotic expansion of the classical length ε → A f (x0, ε). Finally, we prove that this initial part of the asymptotic expansion determines the class of formal conjugacy of the Dulac germ f .

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Maja Resman (autor)

Avatar Url Vesna Županović (autor)

Avatar Url Pavao Mardešić (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com doi.org

Citiraj ovu publikaciju:

Mardešić, Pavao; Resman, Maja; Rolin, J.P.; Županović, Vesna
Tubular neighborhoods of orbits of power- logarithmic germs // Journal of dynamics and differential equations, 2019 (2019), 8, 49 doi:10.1007/s10884-019-09812-8 (međunarodna recenzija, članak, znanstveni)
Mardešić, P., Resman, M., Rolin, J. & Županović, V. (2019) Tubular neighborhoods of orbits of power- logarithmic germs. Journal of dynamics and differential equations, 2019, 8, 49 doi:10.1007/s10884-019-09812-8.
@article{article, author = {Marde\v{s}i\'{c}, Pavao and Resman, Maja and Rolin, J.P. and \v{Z}upanovi\'{c}, Vesna}, year = {2019}, pages = {49}, DOI = {10.1007/s10884-019-09812-8}, chapter = {8}, keywords = {Dulac map, Fractal properties of orbits, ε-Neighborhoods, Power-logarithm asymptotic expansions, Transseries, Formal and analytic invariants, Embedding in a flow}, journal = {Journal of dynamics and differential equations}, doi = {10.1007/s10884-019-09812-8}, volume = {2019}, issn = {1040-7294}, title = {Tubular neighborhoods of orbits of power- logarithmic germs}, keyword = {Dulac map, Fractal properties of orbits, ε-Neighborhoods, Power-logarithm asymptotic expansions, Transseries, Formal and analytic invariants, Embedding in a flow}, chapternumber = {8} }
@article{article, author = {Marde\v{s}i\'{c}, Pavao and Resman, Maja and Rolin, J.P. and \v{Z}upanovi\'{c}, Vesna}, year = {2019}, pages = {49}, DOI = {10.1007/s10884-019-09812-8}, chapter = {8}, keywords = {Dulac map, Fractal properties of orbits, ε-Neighborhoods, Power-logarithm asymptotic expansions, Transseries, Formal and analytic invariants, Embedding in a flow}, journal = {Journal of dynamics and differential equations}, doi = {10.1007/s10884-019-09812-8}, volume = {2019}, issn = {1040-7294}, title = {Tubular neighborhoods of orbits of power- logarithmic germs}, keyword = {Dulac map, Fractal properties of orbits, ε-Neighborhoods, Power-logarithm asymptotic expansions, Transseries, Formal and analytic invariants, Embedding in a flow}, chapternumber = {8} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font