Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1033126

The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region


Csépe, Z; Leelössy, Á; Mányoki, G; Kajtor-Apatini, D; Udvardy, O; Péter, B; Páldy, A; Gelybó, G; Szigeti, T; Pá ndics, T et al.
The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region // Aerobiologia (Bologna), online first (2019), 1-10 doi:10.1007/s10453-019-09615-w (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1033126 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region

Autori
Csépe, Z ; Leelössy, Á ; Mányoki, G ; Kajtor-Apatini, D ; Udvardy, O ; Péter, B ; Páldy, A ; Gelybó, G ; Szigeti, T ; Pá ndics, T ; Kofol-Seliger, A ; Simčić, A ; Leru, P.M ; Eftimie, A-M ; Šikoparija, B ; Radišić, P ; Stjepanović, Barbara ; Hrga, Ivana ; Večenaj, Ana ; Vucić, Anita ; Peroš-Pucar, Danijela ; Škorić, T ; Ščevková, J ; Bastl, M. ; Berger, U. ; Magyar, D.

Izvornik
Aerobiologia (Bologna) (0393-5965) Online first (2019); 1-10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ragweed, Pollen, Forecast, Neural network, MLP

Sažetak
Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10- year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen dana of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a datadriven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low– medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR.

Izvorni jezik
Engleski

Znanstvena područja
Biologija, Interdisciplinarne prirodne znanosti, Javno zdravstvo i zdravstvena zaštita



POVEZANOST RADA


Ustanove:
Nastavni zavod za javno zdravstvo "Dr. Andrija Štampar"

Profili:

Avatar Url Anita Vucić (autor)

Avatar Url Barbara Stjepanović (autor)

Avatar Url Ivana Hrga (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Csépe, Z; Leelössy, Á; Mányoki, G; Kajtor-Apatini, D; Udvardy, O; Péter, B; Páldy, A; Gelybó, G; Szigeti, T; Pá ndics, T et al.
The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region // Aerobiologia (Bologna), online first (2019), 1-10 doi:10.1007/s10453-019-09615-w (međunarodna recenzija, članak, znanstveni)
Csépe, Z., Leelössy, Á., Mányoki, G., Kajtor-Apatini, D., Udvardy, O., Péter, B., Páldy, A., Gelybó, G., Szigeti, T. & Pá ndics, T. (2019) The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region. Aerobiologia (Bologna), online first, 1-10 doi:10.1007/s10453-019-09615-w.
@article{article, author = {Cs\'{e}pe, Z and Leel\"{o}ssy, \'{A} and M\'{a}nyoki, G and Kajtor-Apatini, D and Udvardy, O and P\'{e}ter, B and P\'{a}ldy, A and Gelyb\'{o}, G and Szigeti, T and P\'{a} ndics, T and Kofol-Seliger, A and Sim\v{c}i\'{c}, A and Leru, P.M and Eftimie, A-M and \v{S}ikoparija, B and Radi\v{s}i\'{c}, P and Stjepanovi\'{c}, Barbara and Hrga, Ivana and Ve\v{c}enaj, Ana and Vuci\'{c}, Anita and Pero\v{s}-Pucar, Danijela and \v{S}kori\'{c}, T and \v{S}\v{c}evkov\'{a}, J and Bastl, M. and Berger, U. and Magyar, D.}, year = {2019}, pages = {1-10}, DOI = {10.1007/s10453-019-09615-w}, keywords = {Ragweed, Pollen, Forecast, Neural network, MLP}, journal = {Aerobiologia (Bologna)}, doi = {10.1007/s10453-019-09615-w}, volume = {online first}, issn = {0393-5965}, title = {The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region}, keyword = {Ragweed, Pollen, Forecast, Neural network, MLP} }
@article{article, author = {Cs\'{e}pe, Z and Leel\"{o}ssy, \'{A} and M\'{a}nyoki, G and Kajtor-Apatini, D and Udvardy, O and P\'{e}ter, B and P\'{a}ldy, A and Gelyb\'{o}, G and Szigeti, T and P\'{a} ndics, T and Kofol-Seliger, A and Sim\v{c}i\'{c}, A and Leru, P.M and Eftimie, A-M and \v{S}ikoparija, B and Radi\v{s}i\'{c}, P and Stjepanovi\'{c}, Barbara and Hrga, Ivana and Ve\v{c}enaj, Ana and Vuci\'{c}, Anita and Pero\v{s}-Pucar, Danijela and \v{S}kori\'{c}, T and \v{S}\v{c}evkov\'{a}, J and Bastl, M. and Berger, U. and Magyar, D.}, year = {2019}, pages = {1-10}, DOI = {10.1007/s10453-019-09615-w}, keywords = {Ragweed, Pollen, Forecast, Neural network, MLP}, journal = {Aerobiologia (Bologna)}, doi = {10.1007/s10453-019-09615-w}, volume = {online first}, issn = {0393-5965}, title = {The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region}, keyword = {Ragweed, Pollen, Forecast, Neural network, MLP} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font