Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1032316

Bockstein basis and resolution theorems in extension theory


Tonić, Vera
Bockstein basis and resolution theorems in extension theory // Topology and its applications, 157 (2010), 674-691 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1032316 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Bockstein basis and resolution theorems in extension theory

Autori
Tonić, Vera

Izvornik
Topology and its applications (0166-8641) 157 (2010); 674-691

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex

Sažetak
We prove the following generalization of the Edwards-Walsh Resolution Theorem: Let G be an abelian group with P_G equal to the set of all primes P, where P_G:={;p \in P : Z_{;(p)}; is in Bockstein basis \sigma(G)};. Let n be a natural number and let K be a connected CW-complex such that its n-th homotopy group is isomorphic to G, and its k-th homotopy groups are trivial, for k between 0 and (n-1). Then, for every compact metrizable space X for which K is an absolute extensor, there exists a compact metrizable space Z and a surjective map \pi from Z to X such that: (a) \pi is cell-like, (b) dim Z is less than or equal to n, and (c) Z is an absolute co-extensor for K.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Profili:

Avatar Url Vera Tonić (autor)

Poveznice na cjeloviti tekst rada:

www.sciencedirect.com arxiv.org

Citiraj ovu publikaciju:

Tonić, Vera
Bockstein basis and resolution theorems in extension theory // Topology and its applications, 157 (2010), 674-691 (međunarodna recenzija, članak, znanstveni)
Tonić, V. (2010) Bockstein basis and resolution theorems in extension theory. Topology and its applications, 157, 674-691.
@article{article, author = {Toni\'{c}, Vera}, year = {2010}, pages = {674-691}, keywords = {Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex}, journal = {Topology and its applications}, volume = {157}, issn = {0166-8641}, title = {Bockstein basis and resolution theorems in extension theory}, keyword = {Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex} }
@article{article, author = {Toni\'{c}, Vera}, year = {2010}, pages = {674-691}, keywords = {Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex}, journal = {Topology and its applications}, volume = {157}, issn = {0166-8641}, title = {Bockstein basis and resolution theorems in extension theory}, keyword = {Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font