Pregled bibliografske jedinice broj: 1032316
Bockstein basis and resolution theorems in extension theory
Bockstein basis and resolution theorems in extension theory // Topology and its applications, 157 (2010), 674-691 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1032316 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Bockstein basis and resolution theorems in extension theory
Autori
Tonić, Vera
Izvornik
Topology and its applications (0166-8641) 157
(2010);
674-691
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Bockstein basis, cell-like map, cohomological dimension, CW-complex, dimension, Edwards-Walsh resolution, Eilenberg-MacLane complex, G-acyclic map, inverse sequence, simplicial complex
Sažetak
We prove the following generalization of the Edwards-Walsh Resolution Theorem: Let G be an abelian group with P_G equal to the set of all primes P, where P_G:={;p \in P : Z_{;(p)}; is in Bockstein basis \sigma(G)};. Let n be a natural number and let K be a connected CW-complex such that its n-th homotopy group is isomorphic to G, and its k-th homotopy groups are trivial, for k between 0 and (n-1). Then, for every compact metrizable space X for which K is an absolute extensor, there exists a compact metrizable space Z and a surjective map \pi from Z to X such that: (a) \pi is cell-like, (b) dim Z is less than or equal to n, and (c) Z is an absolute co-extensor for K.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus