Pregled bibliografske jedinice broj: 103156
Minkowski content and singular integrals
Minkowski content and singular integrals // Chaos, solitons and fractals, 17 (2003), 1; 169-177 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 103156 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Minkowski content and singular integrals
Autori
Žubrinić, Darko
Izvornik
Chaos, solitons and fractals (0960-0779) 17
(2003), 1;
169-177
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Sažetak
Assume that lower and upper d-dimensional Minkowski contents of are different both from 0 and . We show that the function d(x, A)- is integrable in a tubular neighbourhood of A if and only if <N-d (the if part is known). von Koch's curve and the Sierpinski gasket are shown to satisfy the Minkowski content condition. The notions of relative Minkowski content and relative box dimension are introduced in order to extend this result to singular functions generated by more general fractal sets, which may have classical upper or lower d-dimensional Minkowski content equal to 0 or .
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0036031
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Darko Žubrinić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews