Pregled bibliografske jedinice broj: 1030866
On joint weak convergence of partial sum and maxima processes
On joint weak convergence of partial sum and maxima processes // Stochastics: An International Journal of Probability and Stochastic Processes, 92 (2020), 6; 876-899 doi:10.1080/17442508.2019.1677662 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1030866 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On joint weak convergence of partial sum and
maxima processes
Autori
Krizmanić, Danijel
Izvornik
Stochastics: An International Journal of Probability and Stochastic Processes (1744-2508) 92
(2020), 6;
876-899
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Functional limit theorem ; regular variation ; weak M1 topology ; extremal process ; Lévy process
Sažetak
For a strictly stationary sequence of random variables we derive functional convergence of the joint partial sum and partial maxima process under joint regular variation with index alpha \in (0, 2) and weak dependence conditions. The limiting process consists of an alpha-stable Lévy process and an extremal process. We also describe the dependence between these two components of the limit. The convergence takes place in the space of R^2- valued cadlag functions on [0, 1], with the Skorohod weak M1 topology. We further show that this topology in general can not be replaced by the stronger (standard) M1 topology.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
projekt potpore Sveučilišta u Rijeci broj 13.14.1.2.02
uniri-prirod-18-9
HRZZ-IP-2013-11-3526 - Stohastičke metode u analitičkim i primijenjenim problemima (SMAAP) (Vondraček, Zoran, HRZZ - 2013-11) ( CroRIS)
Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku
Profili:
Danijel Krizmanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus