Pregled bibliografske jedinice broj: 1030402
On extensibility of some parametric families of D(−1)-pairs to quadruples in rings of integers of the imaginary quadratic fields
On extensibility of some parametric families of D(−1)-pairs to quadruples in rings of integers of the imaginary quadratic fields // Friendly Workshop on Diophantine Equations and Related Problems-2019
Bursa, Turska, 2019. str. 10-10 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1030402 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On extensibility of some parametric families of
D(−1)-pairs to quadruples in rings of integers
of the imaginary quadratic fields
Autori
Soldo, Ivan Soldo, Ivan
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Friendly Workshop on Diophantine Equations and Related Problems-2019
Mjesto i datum
Bursa, Turska, 06.07.2019. - 08.07.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine triple ; quadratic field ; Diophantine equation ; Diophantine quadruple
Sažetak
Let $R$ be a commutative ring. A set of $m$ distinct elements in $R$ such that the product of any two distinct elements increased by $z\in R$ is a perfect square is called a $D(z)$-$m$- tuple in $R$. Let $z=-1$, $R=\mathbb{; ; ; ; Z}; ; ; ; [\sqrt{; ; ; ; - t}; ; ; ; ], t > 0$ and $p$ be an odd prime number. We study the extendibility of $D(-1)$- pairs $\{; ; ; ; 1, p\}; ; ; ; $ and $\ {; ; ; ; 1, 2p^i\}; ; ; ; , i \in \mathbb{; ; ; ; N}; ; ; ; $ to quadruples in $R$. To do it, we study the equation $x^2-(p^{; ; ; ; 2k+2}; ; ; ; +1)y^2=- p^{; ; ; ; 2l+1}; ; ; ; $, $l \in\ {; ; ; ; 0, 1, \dots, k\}; ; ; ; , k \geq 0$ and prove that it is not solvable in positive integers $x$ and $y$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
IP-2018-01-1313
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Ivan Soldo
(autor)