Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1030315

Preconditioned gradient iterations for the eigenproblem of definite matrix pairs


Miloloža Pandur, Marija
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs // Electronic transactions on numerical analysis, 51 (2019), 331-362 doi:10.1553/etna_vol51s331 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1030315 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs

Autori
Miloloža Pandur, Marija

Izvornik
Electronic transactions on numerical analysis (1068-9613) 51 (2019); 331-362

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG

Sažetak
Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems Ax=λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval, which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A, B), that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B) eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around any spectral gap and the corresponding eigenvectors of definite matrix pairs.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Marija Miloloža Pandur (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi etna.mcs.kent.edu

Citiraj ovu publikaciju:

Miloloža Pandur, Marija
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs // Electronic transactions on numerical analysis, 51 (2019), 331-362 doi:10.1553/etna_vol51s331 (međunarodna recenzija, članak, znanstveni)
Miloloža Pandur, M. (2019) Preconditioned gradient iterations for the eigenproblem of definite matrix pairs. Electronic transactions on numerical analysis, 51, 331-362 doi:10.1553/etna_vol51s331.
@article{article, author = {Milolo\v{z}a Pandur, Marija}, year = {2019}, pages = {331-362}, DOI = {10.1553/etna\_vol51s331}, keywords = {eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG}, journal = {Electronic transactions on numerical analysis}, doi = {10.1553/etna\_vol51s331}, volume = {51}, issn = {1068-9613}, title = {Preconditioned gradient iterations for the eigenproblem of definite matrix pairs}, keyword = {eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG} }
@article{article, author = {Milolo\v{z}a Pandur, Marija}, year = {2019}, pages = {331-362}, DOI = {10.1553/etna\_vol51s331}, keywords = {eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG}, journal = {Electronic transactions on numerical analysis}, doi = {10.1553/etna\_vol51s331}, volume = {51}, issn = {1068-9613}, title = {Preconditioned gradient iterations for the eigenproblem of definite matrix pairs}, keyword = {eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font