Pregled bibliografske jedinice broj: 1030315
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs
Preconditioned gradient iterations for the eigenproblem of definite matrix pairs // Electronic transactions on numerical analysis, 51 (2019), 331-362 doi:10.1553/etna_vol51s331 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1030315 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Preconditioned gradient iterations for the
eigenproblem of definite matrix pairs
Autori
Miloloža Pandur, Marija
Izvornik
Electronic transactions on numerical analysis (1068-9613) 51
(2019);
331-362
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
eigenpair, definite matrix pair, definitizing shift, definiteness interval, spectral gap, preconditioned steepest descent/ascent iteration, indefinite LOBPCG
Sažetak
Preconditioned gradient iterations for large and sparse Hermitian generalized eigenvalue problems Ax=λBx, with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper we give a unifying framework of preconditioned gradient iterations for definite generalized eigenvalue problems with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval, which can be in the middle of the spectrum, and the corresponding eigenvectors of definite matrix pairs (A, B), that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B) eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient method. Finally, we derive some ideas on how to use our indefinite eigensolver to compute a few eigenvalues around any spectral gap and the corresponding eigenvectors of definite matrix pairs.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Profili:
Marija Miloloža Pandur
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus