Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1030193

Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach


Kovačić, Jelena
Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach // Expert systems with applications, 141 (2020), 112956, 11 doi:10.1016/j.eswa.2019.112956 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1030193 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach

Autori
Kovačić, Jelena

Izvornik
Expert systems with applications (0957-4174) 141 (2020); 112956, 11

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bayesian networks ; Meta-analysis ; Missing data

Sažetak
Previous research suggested that using additional data sources could improve parameter learning in Bayesian networks. However, when additional datasets do not include all network variables, neither standard Bayesian network learning techniques nor standard missing data methods can be applied. In such situations, the use of a meta-analytic approach is proposed. The performance of one such meta-analytic approach was evaluated by simulating several study results on two real-life biomedical examples (one discrete and one Gaussian Bayesian network). Regardless of the network type, the meta-analytic approach showed higher mean log-likelihood values, less sensitive to the presence of heterogeneity, than a single dataset analysis. The difference between the two methods was most pronounced when sample sizes were small (N=100). For the meta–analytic approach, the increase in log-likelihood was in most cases positively related to the number of nodes estimated with additional data. However, as in the case of single dataset analysis, care is needed when estimating rare event probabilities from small datasets due to the problems with unidentifiability and increased bias.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Javno zdravstvo i zdravstvena zaštita



POVEZANOST RADA


Ustanove:
Institut za medicinska istraživanja i medicinu rada, Zagreb

Profili:

Avatar Url Jelena Kovačić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Kovačić, Jelena
Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach // Expert systems with applications, 141 (2020), 112956, 11 doi:10.1016/j.eswa.2019.112956 (međunarodna recenzija, članak, znanstveni)
Kovačić, J. (2020) Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach. Expert systems with applications, 141, 112956, 11 doi:10.1016/j.eswa.2019.112956.
@article{article, author = {Kova\v{c}i\'{c}, Jelena}, year = {2020}, pages = {11}, DOI = {10.1016/j.eswa.2019.112956}, chapter = {112956}, keywords = {Bayesian networks, Meta-analysis, Missing data}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2019.112956}, volume = {141}, issn = {0957-4174}, title = {Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach}, keyword = {Bayesian networks, Meta-analysis, Missing data}, chapternumber = {112956} }
@article{article, author = {Kova\v{c}i\'{c}, Jelena}, year = {2020}, pages = {11}, DOI = {10.1016/j.eswa.2019.112956}, chapter = {112956}, keywords = {Bayesian networks, Meta-analysis, Missing data}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2019.112956}, volume = {141}, issn = {0957-4174}, title = {Learning parameters of Bayesian networks from datasets with systematically missing data: A meta-analytic approach}, keyword = {Bayesian networks, Meta-analysis, Missing data}, chapternumber = {112956} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font