Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1028875

On the topological computation of K4 of the Gaussian and Eisenstein integers


Dutour Sikirić, Mathieu; Gangl, Herbert; Gunnells, Paul E.; Hanke, Jonathan; Schürmann, Achill; Yasaki, Dan
On the topological computation of K4 of the Gaussian and Eisenstein integers // Journal of Homotopy and Related Structures, 14 (2019), 1; 281-291 doi:10.1007/s40062-018-0212-8 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1028875 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On the topological computation of K4 of the Gaussian and Eisenstein integers

Autori
Dutour Sikirić, Mathieu ; Gangl, Herbert ; Gunnells, Paul E. ; Hanke, Jonathan ; Schürmann, Achill ; Yasaki, Dan

Izvornik
Journal of Homotopy and Related Structures (2193-8407) 14 (2019), 1; 281-291

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Cohomology of arithmetic groups ; Voronoi reduction theory ; Linear groups over imaginary quadratic fields ; K-theory of number rings

Sažetak
In this paper we use topological tools to investigate the structure of the algebraic K-groups K4(R) for R=Z[i] and R=Z[ρ] where i:= \sqrt{; ; -1}; ; and ρ:= (1+\sqrt{; ; -3}; ; )/2. We exploit the close connection between homology groups of GLn(R) for n≤5 and those of related classifying spaces, then compute the former using Voronoi’s reduction theory of positive definite quadratic and Hermitian forms to produce a very large finite cell complex on which GLn(R) acts. Our main result is that K4(Z[i]) and K4(Z[ρ]) have no p-torsion for p≥5.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org link.springer.com

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Gangl, Herbert; Gunnells, Paul E.; Hanke, Jonathan; Schürmann, Achill; Yasaki, Dan
On the topological computation of K4 of the Gaussian and Eisenstein integers // Journal of Homotopy and Related Structures, 14 (2019), 1; 281-291 doi:10.1007/s40062-018-0212-8 (međunarodna recenzija, članak, znanstveni)
Dutour Sikirić, M., Gangl, H., Gunnells, P., Hanke, J., Schürmann, A. & Yasaki, D. (2019) On the topological computation of K4 of the Gaussian and Eisenstein integers. Journal of Homotopy and Related Structures, 14 (1), 281-291 doi:10.1007/s40062-018-0212-8.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Gangl, Herbert and Gunnells, Paul E. and Hanke, Jonathan and Sch\"{u}rmann, Achill and Yasaki, Dan}, year = {2019}, pages = {281-291}, DOI = {10.1007/s40062-018-0212-8}, keywords = {Cohomology of arithmetic groups, Voronoi reduction theory, Linear groups over imaginary quadratic fields, K-theory of number rings}, journal = {Journal of Homotopy and Related Structures}, doi = {10.1007/s40062-018-0212-8}, volume = {14}, number = {1}, issn = {2193-8407}, title = {On the topological computation of K4 of the Gaussian and Eisenstein integers}, keyword = {Cohomology of arithmetic groups, Voronoi reduction theory, Linear groups over imaginary quadratic fields, K-theory of number rings} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Gangl, Herbert and Gunnells, Paul E. and Hanke, Jonathan and Sch\"{u}rmann, Achill and Yasaki, Dan}, year = {2019}, pages = {281-291}, DOI = {10.1007/s40062-018-0212-8}, keywords = {Cohomology of arithmetic groups, Voronoi reduction theory, Linear groups over imaginary quadratic fields, K-theory of number rings}, journal = {Journal of Homotopy and Related Structures}, doi = {10.1007/s40062-018-0212-8}, volume = {14}, number = {1}, issn = {2193-8407}, title = {On the topological computation of K4 of the Gaussian and Eisenstein integers}, keyword = {Cohomology of arithmetic groups, Voronoi reduction theory, Linear groups over imaginary quadratic fields, K-theory of number rings} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font