Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1028732

Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods


Horvat, Tomislav; Job, Josip
Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods // Elektrotehniški vestnik, 86 (2019), 4; 197-202 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1028732 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods

Autori
Horvat, Tomislav ; Job, Josip

Izvornik
Elektrotehniški vestnik (0013-5852) 86 (2019), 4; 197-202

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
basketball, classification, machine learning, NBA, outcome prediction

Sažetak
The focus of the paper is on using naive machine learning algorithms for predicting the NBA game outcomes. In order to complete a convincing result, the data of nine full NBA seasons are scraped for the proposed model training and result evaluation. The aim of the paper is to present the possibilities of naive machine learning methods and to define the length of the training phase as well as of the evaluation phase to be optimal for predicting the NBA games outcome. The research serves as an initial stage in the development of a doctoral dissertation on the outcome prediction in sport. The proposed supervised classification machine learning methods is used and two possible outcomes (win or loss) are predicted. The data segmentation is used as an evaluation method for a training dataset occurring chronologically prior to the testing dataset. The best results are achieved by using a single training season and one to three evaluation seasons and all the played games during the training phase.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek,
Sveučilište Sjever, Koprivnica

Profili:

Avatar Url Josip Job (autor)

Avatar Url Tomislav Horvat (autor)

Poveznice na cjeloviti tekst rada:

ev.fe.uni-lj.si

Citiraj ovu publikaciju:

Horvat, Tomislav; Job, Josip
Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods // Elektrotehniški vestnik, 86 (2019), 4; 197-202 (međunarodna recenzija, članak, znanstveni)
Horvat, T. & Job, J. (2019) Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods. Elektrotehniški vestnik, 86 (4), 197-202.
@article{article, author = {Horvat, Tomislav and Job, Josip}, year = {2019}, pages = {197-202}, keywords = {basketball, classification, machine learning, NBA, outcome prediction}, journal = {Elektrotehni\v{s}ki vestnik}, volume = {86}, number = {4}, issn = {0013-5852}, title = {Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods}, keyword = {basketball, classification, machine learning, NBA, outcome prediction} }
@article{article, author = {Horvat, Tomislav and Job, Josip}, year = {2019}, pages = {197-202}, keywords = {basketball, classification, machine learning, NBA, outcome prediction}, journal = {Elektrotehni\v{s}ki vestnik}, volume = {86}, number = {4}, issn = {0013-5852}, title = {Importance of the training dataset length in basketball game outcome prediction by using naive classification machine learning methods}, keyword = {basketball, classification, machine learning, NBA, outcome prediction} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font