Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1028532

Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking


Kvasić, Igor; Mišković, Nikola; Vukić, Zoran
Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking // OCEANS 2019 Marseille Online Proceedings
Marseille: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 1-6 doi:10.1109/oceanse.2019.8867461 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1028532 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking

Autori
Kvasić, Igor ; Mišković, Nikola ; Vukić, Zoran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
OCEANS 2019 Marseille Online Proceedings / - Marseille : Institute of Electrical and Electronics Engineers (IEEE), 2019, 1-6

Skup
MTS/IEEE OCEANS ’19 Marseille Conference and Exhibit

Mjesto i datum
Marseille, Francuska, 17.06.2019. - 20.06.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Sonar detection , Computer architecture , Object detection , Sonar measurements , Neural networks

Sažetak
Autonomous underwater navigation presents a whole set of challenges to be resolved in order to become adequately accurate and reliable. That is particularly critical when human divers work in close collaboration with autonomous underwater vehicles (AUVs). In absence of global positioning signals underwater, acoustic based sensors such as LBL (long-baseline), SBL (short-baseline) and USBL (ultrashort-baseline) are commonly used for navigation and localization. In addition to these low- bandwidth and high latency technologies, cameras and sonars can provide position measurements relative to the vehicle which can be used as an aid for navigation as well as for keeping a safe working distance between the diver and the AUV. While optical cameras are highly affected by water turbidity and lighting conditions, sonar images often become hard to interpret using conventional image processing methods due to image granulation and high noise levels.This paper focuses on finding a robust and reliable sonar image processing method for detection and tracking of human divers using convolutional neural networks. Machine learning algorithms are making a huge impact in computer vision applications but are not always considered when it comes to sonar image processing. After presenting commonly used image processing techniques the paper will focus on giving an overview of state-of-the-art machine learning algorithms and explore their performance in custom sonar image dataset processing. Finally, the performance of these algorithms will be compared on a set of sonar recordings to determine their reliability and applicability in a real-time operation.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
ONR-N000141812011

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Zoran Vukić (autor)

Avatar Url Nikola Mišković (autor)

Avatar Url Igor Kvasić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi

Citiraj ovu publikaciju:

Kvasić, Igor; Mišković, Nikola; Vukić, Zoran
Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking // OCEANS 2019 Marseille Online Proceedings
Marseille: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 1-6 doi:10.1109/oceanse.2019.8867461 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kvasić, I., Mišković, N. & Vukić, Z. (2019) Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking. U: OCEANS 2019 Marseille Online Proceedings doi:10.1109/oceanse.2019.8867461.
@article{article, author = {Kvasi\'{c}, Igor and Mi\v{s}kovi\'{c}, Nikola and Vuki\'{c}, Zoran}, year = {2019}, pages = {1-6}, DOI = {10.1109/oceanse.2019.8867461}, keywords = {Sonar detection , Computer architecture , Object detection , Sonar measurements , Neural networks}, doi = {10.1109/oceanse.2019.8867461}, title = {Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking}, keyword = {Sonar detection , Computer architecture , Object detection , Sonar measurements , Neural networks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Marseille, Francuska} }
@article{article, author = {Kvasi\'{c}, Igor and Mi\v{s}kovi\'{c}, Nikola and Vuki\'{c}, Zoran}, year = {2019}, pages = {1-6}, DOI = {10.1109/oceanse.2019.8867461}, keywords = {Sonar detection , Computer architecture , Object detection , Sonar measurements , Neural networks}, doi = {10.1109/oceanse.2019.8867461}, title = {Convolutional Neural Network Architectures for Sonar-Based Diver Detection and Tracking}, keyword = {Sonar detection , Computer architecture , Object detection , Sonar measurements , Neural networks}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Marseille, Francuska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font