Pregled bibliografske jedinice broj: 1028482
The extension of the infinite two-parameter family of Diophantine triples
The extension of the infinite two-parameter family of Diophantine triples // Conference on Diophantine m-tuples and Related Problems II
Hammond (IN), Sjedinjene Američke Države; Westville (NJ), Sjedinjene Američke Države, 2018. (plenarno, podatak o recenziji nije dostupan, neobjavljeni rad, znanstveni)
CROSBI ID: 1028482 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The extension of the infinite two-parameter family of Diophantine triples
Autori
Filipin, Alan ; Cipu, Mihai ; Fujita, Yasutsugu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni
Skup
Conference on Diophantine m-tuples and Related Problems II
Mjesto i datum
Hammond (IN), Sjedinjene Američke Države; Westville (NJ), Sjedinjene Američke Države, 15.10.2018. - 17.10.2018
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
Diophantine m-tuples
Sažetak
A set of m positive integers is called a Diophantine m-tuple if the product of any two elements in the set increased by 1 is a perfect square. One of the question of interest is how large those sets can be. Very recently He, Togbe and Ziegler proved the folklore conjecture that there does not exist a Diophantine quintuple. There is also stronger version of that conjecture which states that every Diophantine triple can be extended to a quadruple, with a larger element, in a unique way. That conjecture is still open. In this talk we study the two families of Diophantine pairs and consider their extension. More precisely we prove the mentioned conjecture for the triples $\{;a, b, c\};$, where $a$ and $b$ are positive integers defined by $a=KA^2$, $b=4KA^4+4\varepsilon A$ with $K, A$ positive integers and $\varepsilon \in \{;\pm1\};$ and $c$ is given by $c=c_{;\nu};^{;\tau};$, where $c_{;\nu};^{;\tau};=\frac{;1};{;4ab};\left\{;(\sqrt{;b};+\tau \sqrt{;a};)^2(r+\sqrt{;ab};)^{;2\nu};+(\sqrt{;b};-\tau \sqrt{;a};)^2(r-\sqrt{;ab};)^{;2\nu};-2(a+b)\right\};$, with $\nu$ a positive integer and $\tau \in \{;\pm\};$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA