Pregled bibliografske jedinice broj: 1028458
The extension of some Diophantine triples
The extension of some Diophantine triples // Abstract Booklet of The 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas 2019 (MICOPAM 2019)
Pariz, Francuska, 2019. str. 2-2 (pozvano predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 1028458 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The extension of some Diophantine triples
Autori
Filipin, Alan ; Cipu, Mihai ; Fujita, Yasutsugu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstract Booklet of The 2nd Mediterranean International Conference of Pure & Applied Mathematics and Related Areas 2019 (MICOPAM 2019)
/ - , 2019, 2-2
Skup
The 2nd Mediterranean International Conference of Pure&Applied Mathematics and Related Areas
Mjesto i datum
Pariz, Francuska, 28.08.2019. - 31.08.2019
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Diophantine m-tuples
Sažetak
Diophantinem-tuple is the set of m positive integers such that the product of any two of them increased by 1 is a perfect square. One of the most interesting question, and problem various mathematicians tried to solve, is how large those sets can be. Recently, He, Togbe and Ziegler proved the folklore conjecture that there does not exist a Diophantine quintuple. There is a stronger version of that conjecture which states that every Diophantine triple can be extended to a quadruple with a larger element in a unique way. That is still an open problem.In this talk, we consider the extension of the infinite two-parameter family of Diophantine triples. More precisely, we prove the following: Let a and b be positive integers defined by a=KA^2, b=4KA^4+4εA with K, A positive integers and ε=±1. Define an integer c=c^{; ; ±}; ; _ν by c^{; ; ±}; ; _ν=1/(4ab)((√b±√a)^2(r+√ab)^{; ; 2ν}; ; +(√b∓√a)^2(r−√ab)^{; ; 2ν}; ; −2(a+b)), with ν positive integer. Then, there is a unique extension of the Diophantine triple {; ; a, b, c}; ; to a quadruple with a larger element. We also prove the stronger version of Diophantine quintuple conjecture for the triples of the form {;a, b, c};, where roughly a^2<b<4a^2.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA