Pregled bibliografske jedinice broj: 1028181
Machine Learning Methods for Classification of the Green Infrastructure in City Areas
Machine Learning Methods for Classification of the Green Infrastructure in City Areas // ISPRS International Journal of Geo-Information, 8 (2019), 463; 1-15 doi:10.3390/ijgi8100463 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1028181 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning Methods for Classification of the Green Infrastructure in City Areas
Autori
Kranjčić, Nikola ; Medak, Damir ; Župan, Robert ; Rezo, Milan
Izvornik
ISPRS International Journal of Geo-Information (2220-9964) 8
(2019), 463;
1-15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
green urban infrastructure ; support vector machines ; artificial neural networks ; naïve Bayes classifier ; random forest ; Sentinel 2-MSI
Sažetak
Rapid urbanization in cities can result in a decrease in green urban areas. Reductions in green urban infrastructure pose a threat to the sustainability of cities. Up-to-date maps are important for the effective planning of urban development and the maintenance of green urban infrastructure. There are many possible ways to map vegetation ; however, the most effective way is to apply machine learning methods to satellite imagery. In this study, we analyze four machine learning methods (support vector machine, random forest, artificial neural network, and the naïve Bayes classifier) for mapping green urban areas using satellite imagery from the Sentinel-2 multispectral instrument. The methods are tested on two cities in Croatia (Varaždin and Osijek). Support vector machines outperform random forest, artificial neural networks, and the naïve Bayes classifier in terms of classification accuracy (a Kappa value of 0.87 for Varaždin and 0.89 for Osijek) and performance time.
Izvorni jezik
Engleski
Znanstvena područja
Geodezija
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5621 - Geoprostorno praćenje zelene infrastrukture na temelju terestričkih, zračnih i satelitskih snimaka (GEMINI) (Medak, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Geodetski fakultet, Zagreb,
Geotehnički fakultet, Varaždin
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus