Pregled bibliografske jedinice broj: 1028055
On the Comparison of Classic and Deep Keypoint Detector and Descriptor Methods
On the Comparison of Classic and Deep Keypoint Detector and Descriptor Methods // 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) / Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko (ur.).
Dubrovnik: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 64-69 doi:10.1109/ISPA.2019.8868792 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1028055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the Comparison of Classic and Deep Keypoint Detector and Descriptor Methods
Autori
Bojanić, David ; Bartol, Kristijan ; Pribanić, Tomislav ; Petković, Tomislav ; Diez Donoso, Yago ; Salvi Mas, Joaquim
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA)
/ Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko - Dubrovnik : Institute of Electrical and Electronics Engineers (IEEE), 2019, 64-69
ISBN
978-1-7281-3140-5
Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)
Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
keypoint detection, keypoint description, deep learning, benchmark evaluation, average precision
Sažetak
The purpose of this study is to give a performance comparison between several classic hand-crafted and deep keypoint detector and descriptor methods. In particular, we consider the following classical algorithms: SIFT, SURF, ORB, FAST, BRISK, MSER, HARRIS, KAZE, AKAZE, AGAST, GFTT, FREAK, BRIEF and RootSIFT, where a subset of all combinations is paired into detector-descriptor pipelines. Additionally, we analyze the performance of two recent and perspective deep detector-descriptor models, LF- Net and SuperPoint. Our benchmark relies on the HPSequences dataset that provides real and diverse images under various geometric and illumination changes. We analyze the performance on three evaluation tasks: keypoint verification, image matching and keypoint retrieval. The results show that certain classic and deep approaches are still comparable, with some classic detector-descriptor combinations overperforming pretrained deep models. In terms of the execution times of tested implementations, SuperPoint model is the fastest, followed by ORB.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
HRZZ-IP-2018-01-8118 - Izračun antropometrijskih mjera pametnim telefonom i tabletom (STEAM) (Pribanić, Tomislav, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Tomislav Petković
(autor)
Kristijan Bartol
(autor)
Tomislav Pribanić
(autor)
David Bojanić
(autor)