Pregled bibliografske jedinice broj: 1027408
Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack
Thermal Management of Edge-Cooled 1 kW Portable Proton Exchange Membrane Fuel Cell Stack // Applied energy, 257 (2020), 114038, 19 doi:10.1016/j.apenergy.2019.114038 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1027408 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Thermal Management of Edge-Cooled 1 kW Portable
Proton Exchange Membrane Fuel Cell Stack
Autori
Tolj, Ivan ; Penga, Željko ; Vukičević, Damir ; Barbir, Frano
Izvornik
Applied energy (0306-2619) 257
(2020);
114038, 19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
PEM fuel cell ; Portable stack ; Edge cooling ; Water and heat management ; Transient analysis
Sažetak
Comprehensive numerical analyses are conducted to study the influence of thermal management on performance of 1 kW edge-cooled proton exchange membrane fuel cell stack without external humidification. The experimental stack and numerical three- dimensional computational fluid dynamics model are characterized by several novelty aspects. Two numerical approaches are considered and compared for a prescribed load profile: (i) lumped model and novel (ii) real- time transient computational fluid dynamics model incorporating realistic modeling of forced air convection on the edge- cooling of the stack. The novelty of the developed computational fluid dynamics model is the capability to give insight in the transient results in only a fraction of time vs. experimental testing (40 mins vs. 4 hours) and other computational fluid dynamics models of fuel cells which are only capable of steady- state analysis. The developed computational fluid dynamics model is used to study the influence of (i) bipolar plate materials (ii) operating delta pressure along the flow field and (iii) different cooling fin configurations on the water and heat balance inside the stack. The results indicate that (i) maximal and average temperatures of the stack are almost linearly correlated to the thermal conductivity of bipolar plate materials and maximal temperatures can be significantly higher (ii) the operating delta pressure can be manipulated to increase the performance of the stack and (iii) the cooling fin redesign has major influence on the overall temperature uniformity across the stack. Additionally, the heat transfer between the stack and metal hydride tank is studied.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo, Strojarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
STIM-REI
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus