Pregled bibliografske jedinice broj: 1027360
Randomized Methods for Recompression of Low-rank Tensors
Randomized Methods for Recompression of Low-rank Tensors // SIAM CSE19 - Program and Abstracts
Spokane (WA), Sjedinjene Američke Države, 2018. str. 680-680 (poster, nije recenziran, sažetak, ostalo)
CROSBI ID: 1027360 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Randomized Methods for Recompression of Low-rank Tensors
Autori
Periša Lana ; Kressner, Daniel
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, ostalo
Izvornik
SIAM CSE19 - Program and Abstracts
/ - , 2018, 680-680
Skup
SIAM Conference on Computational Science and Engineering (CSE19)
Mjesto i datum
Spokane (WA), Sjedinjene Američke Države, 25.02.2018. - 01.03.2018
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
tensors, recompression, randomized algorithm
Sažetak
Many basic linear algebra operations with low-rank tensors, like addition, matrix-vector multiplication or element-wise product, have a tendency to significantly increase the rank, even though the resulting tensors admit a good low-rank approximation. We use randomized algorithm to recompress these tensors when dealing with low-rank formats such as Tucker and Tensor Train, by employing random vectors with rank-1 structure which matches the structure of the tensors. In case of element-wise product of tensors, this has shown to significantly reduce the computational effort, while achieving a similar accuracy as the corresponding deterministic techniques.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split
Profili:
Daniel Kressner
(autor)