Pregled bibliografske jedinice broj: 1027355
Randomized Rank-1 Method for Tensor Recompression
Randomized Rank-1 Method for Tensor Recompression // ICIAM 2019 - program and abstract book
Valencia, Španjolska, 2019. str. 272-272 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1027355 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Randomized Rank-1 Method for Tensor Recompression
Autori
Periša Lana ; Kressner Daniel
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
ICIAM 2019 - program and abstract book
/ - , 2019, 272-272
Skup
The 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019)
Mjesto i datum
Valencia, Španjolska, 15.07.2019. - 19.07.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
tensors, recompression, randomized algorithm
Sažetak
Many basic linear algebra operations with low-rank tensors, like element-wise product, have a tendency to significantly increase the rank, even though the resulting tensors admit a good low-rank approximation. We use randomized algorithm to recompress these tensors when dealing with low-rank formats such as Tucker and Tensor Train, by employing random vectors with rank-1 structure which matches the structure of the tensors, which has shown to significantly reduce the computational effort
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split