Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1026672

Comparison of Machine Learning Algorithms for Somatotype Classification


Katović, Darko; Cvjetko, Miljenko
Comparison of Machine Learning Algorithms for Somatotype Classification // Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support / Vilas-Boas, João ; Pezarat-Correia, Pedro ; Cabri, Jan (ur.).
Beč: SCITEPRESS, 2019. str. 217-223 doi:10.5220/0008368002170223 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1026672 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Machine Learning Algorithms for Somatotype Classification

Autori
Katović, Darko ; Cvjetko, Miljenko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support / Vilas-Boas, João ; Pezarat-Correia, Pedro ; Cabri, Jan - Beč : SCITEPRESS, 2019, 217-223

ISBN
978-989-758-383-4

Skup
7th International Conference on Sport Sciences Research and Technology Support

Mjesto i datum
Beč, Austrija, 20.09.2019. - 21.09.2019

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Machine Learning ; Multiclass Classifiers ; Somatotype ; Supervised Classification

Sažetak
System modeling (identification) in complex systems like kinesiological and biological in general is extremely difficult due to the high dimensions of parameters and usually non-linear functional dependencies. Data Science and especially Machine Learning (Deep Learning) algorithms seem to be quite a good tool for analysis and problem-solving in sports today. Data Science (Machine or Deep Learning) algorithms rely on basic use of statistical algorithms, but extend those with models such as Decision tree, K-means clustering, Neural networks, and Reinforcement learning, creating new algorithms that handle input data by predicting outputs that describe correlation relations or predict future states at time points (regression). This study is an attempt to analyze and research applications of machine learning in Sport science - Kinanthropometry related problem of determining somatotype by using the Microsoft Azure Machine Learning platform and comparing several supervised classifier algorithms (Multiclass Neural Network, Multiclass Decision Forest, Multiclass Decision Jungle and Multiclass Logistic Regression) which were compared versus classical somatotype categorization algorithms with dataset based on the Heath-Carter method Somatotype determination to gain experience and expertise.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Interdisciplinarne prirodne znanosti, Kineziologija



POVEZANOST RADA


Ustanove:
Kineziološki fakultet, Zagreb

Profili:

Avatar Url Darko Katović (autor)

Poveznice na cjeloviti tekst rada:

doi www.scitepress.org

Citiraj ovu publikaciju:

Katović, Darko; Cvjetko, Miljenko
Comparison of Machine Learning Algorithms for Somatotype Classification // Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support / Vilas-Boas, João ; Pezarat-Correia, Pedro ; Cabri, Jan (ur.).
Beč: SCITEPRESS, 2019. str. 217-223 doi:10.5220/0008368002170223 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Katović, D. & Cvjetko, M. (2019) Comparison of Machine Learning Algorithms for Somatotype Classification. U: Vilas-Boas, J., Pezarat-Correia, P. & Cabri, J. (ur.)Proceedings of the 7th International Conference on Sport Sciences Research and Technology Support doi:10.5220/0008368002170223.
@article{article, author = {Katovi\'{c}, Darko and Cvjetko, Miljenko}, year = {2019}, pages = {217-223}, DOI = {10.5220/0008368002170223}, keywords = {Machine Learning, Multiclass Classifiers, Somatotype, Supervised Classification}, doi = {10.5220/0008368002170223}, isbn = {978-989-758-383-4}, title = {Comparison of Machine Learning Algorithms for Somatotype Classification}, keyword = {Machine Learning, Multiclass Classifiers, Somatotype, Supervised Classification}, publisher = {SCITEPRESS}, publisherplace = {Be\v{c}, Austrija} }
@article{article, author = {Katovi\'{c}, Darko and Cvjetko, Miljenko}, year = {2019}, pages = {217-223}, DOI = {10.5220/0008368002170223}, keywords = {Machine Learning, Multiclass Classifiers, Somatotype, Supervised Classification}, doi = {10.5220/0008368002170223}, isbn = {978-989-758-383-4}, title = {Comparison of Machine Learning Algorithms for Somatotype Classification}, keyword = {Machine Learning, Multiclass Classifiers, Somatotype, Supervised Classification}, publisher = {SCITEPRESS}, publisherplace = {Be\v{c}, Austrija} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
    • Conference Proceedings Citation Index - Social Sciences & Humanities (CPCI-SSH)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font